
Bayesian Continuous-Time Tucker Decomposition

Shikai Fang 1 2 Akil Narayan 2 3 Robert M. Kirby 1 2 Shandian Zhe 1

Abstract
Tensor decomposition is a dominant framework
for multiway data analysis and prediction. Al-
though practical data often contains timestamps
for the observed entries, existing tensor decom-
position approaches overlook or under-use this
valuable temporal information. They either drop
the timestamps or bin them into crude steps and
hence ignore the temporal dynamics within each
step or use simple parametric time coefficients. To
overcome these limitations, we propose Bayesian
Continuous-Time Tucker Decomposition (BCTT).
We model the tensor-core of the classical Tucker
decomposition as a time-varying function, and
place a Gaussian process prior to flexibly estimate
all kinds of temporal dynamics. In this way, our
model maintains the interpretability while is flexi-
ble enough to capture various complex temporal
relationships between the tensor nodes. For ef-
ficient and high-quality posterior inference, we
use the stochastic differential equation (SDE) rep-
resentation of temporal GPs to build an equiva-
lent state-space prior, which avoids huge kernel
matrix computation and sparse/low-rank approx-
imations. We then use Kalman filtering, RTS
smoothing, and conditional moment matching to
develop a scalable message-passing inference al-
gorithm. We show the advantage of our method
in simulation and several real-world applications.

1. Introduction
Multiway interaction data is omnipresent in real-world ap-
plications, such as in online advertising, e-commerce and
social networking. A popular and powerful framework for
multiway interaction analysis and prediction is tensor de-
composition, which aims to estimate a set of latent factors to

1School of Computing, University of Utah 2 Scientific Comput-
ing and Imaging (SCI) Institute, University of Utah 3Department
of Mathematics, University of Utah. Correspondence to: Shandian
Zhe <zhe@cs.utah.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

represent the interaction nodes, and use the factors to recon-
struct the observed tensor elements. The factors can reflect
unknown patterns in data, such as communities across the
nodes, and provide effective features to build downstream
predictive tools, such as product rating for recommendation
and clicks for advertisement display.

While many successful tensor decomposition methods have
been developed (Tucker, 1966; Harshman, 1970; Chu and
Ghahramani, 2009; Kang et al., 2012; Choi and Vish-
wanathan, 2014), these methods ignore or under-exploit
the valuable time information, which often comes along
with the tensor data, e.g., at which time point a user pur-
chased an item at a specific Amazon store. Current methods
often throw out the timestamps or bin the timestamps into
crude steps, e.g., weeks or months, and augment the ten-
sor with a time step mode (Xiong et al., 2010; Xu et al.,
2012; Rogers et al., 2013; Zhe et al., 2015; 2016a; Du
et al., 2018). While between the steps we can use con-
ditional priors and/or nonlinear dynamics to model their
transition, the temporal dependencies within each step are
overlooked. The most recent work (Zhang et al., 2021)
although introduces continuous-time coefficients into the
CANDECOMP/PARAFAC (CP) decomposition (Harshman,
1970), its parametric modeling of the coefficients, i.e., poly-
nomial splines, might not be flexible enough to capture a
variety of different temporal dynamics in data (e.g., from
simple linear to highly nonlinear).

To overcome these limitations, we propose BCTT, a novel
continuous-time Bayesian dynamic decomposition model.
We extend the classical Tucker decomposition, which ac-
counts for every multiplicative interaction between the fac-
tors across different tensor modes and is highly interpretable
and quite expressive. We model the tensor-core — weights
of the factor interactions — as a time-varying function. We
place a Gaussian process (GP) prior, a nonparametric func-
tion prior that can flexibly estimate all kinds of functions,
not restricted to any specific parametric form. In this way,
our model not only maintains the interpretability, but also
can automatically capture different, complex temporal dy-
namics from data. For efficient and high-quality posterior
inference, we construct a linear time-invariant (LTI) stochas-
tic differential equation (SDE) (Hartikainen and Särkkä,
2010) as an equivalent representation of the temporal GP.
Based on the LTI-SDE, we build a state-space prior, which

Bayesian Continuous-Time Tensor Decomposition

is essentially a Gaussian Markov chain but is equivalent to
the GP prior. In this way, we circumvent the expensive ker-
nel matrix computation in the original GP, and do not need
any low-rank or sparse approximations. Next, we develop
a message-passing posterior inference algorithm in the ex-
pectation propagation framework. We use Kalman filtering
and Rauch–Tung–Striebel (RTS) smoothing (Särkkä, 2013)
to efficiently compute the posterior of the SDE states, and
use conditional moment matching (Wang and Zhe, 2019)
and multi-variate delta method (Bickel and Doksum, 2015)
to overcome the intractability in moment matching. Both
the time and space complexity of our inference algorithm is
linear in the number of observed data points.

For evaluation, we examined our approach in both ablation
study and real-world applications. On synthetic datasets,
BCTT successful learned different temporal dynamics and
recovered the clustering structures of the tensor nodes from
their factor estimation. On three real-world temporal tensor
datasets, BCTT significantly outperforms the competing
dynamic decomposition methods, including discrete time
factors and continuous time coefficients, often by a large
margin. The structure of the learned tensor-core also shows
interesting temporal evolution.

2. Background
Tensor Decomposition. Consider a K-mode tensor Y ∈
Rd1×···×dK , where dk is the number of nodes in mode k. We
use a K-elements tuple i = (i1, . . . , iK) to index each entry
of the tensor, and denote the entry value by yi. To factorize
Y into a concise structure, we introduce a set of latent fac-
tors for the tensor nodes, U = {U1, . . . ,UK}, where each
Uk = [uk1 , . . . ,u

k
dk

]> is a factor matrix, in which each row
consists of the factors for a node j in mode k, namely ukj
(1 ≤ j ≤ dk). Given the factorization form, we estimate the
optimal factors U to reconstruct the tensor Y , by minimizing
a loss on the observed entries. The (arguably) most popular
tensor factorization model is CANDECOMP/PARAFAC
(CP) (Harshman, 1970), whose entry-wise form is given by

yi ≈ λ>(u1
i1 ◦ . . . ◦ uKiK) =

∑R

r=1
λr
∏K

k=1
ukik,r, (1)

where ◦ is the Hadamard (element-wise) product, λ =
(λ1, . . . , λR)> and each ukik = (ukik,1, . . . , u

k
ik,R

)>. While
simple and convenient, CP only accounts for the inter-
action between every r-th factor in different modes, i.e.,∏K
k=1 u

k
ik,r

(weighted by λr accordingly), and overlook all
the other possible interactions.

Tucker decomposition (Tucker, 1966) is more interpretable
and expressive than CP in that it considers all the possible
interactions between the factors across the tensor modes.
Specifically, Tucker decomposition assumes Y ≈ W ×1

U1 ×2 . . .×K UK whereW ∈ RR1×...×RK is parametric

tensor-core and ×k is mode k tensor-matrix product (Kolda,
2006). The entry-wise form is therefore given by

yi ≈ vec(W)>
(
u1
i1 ⊗ . . .⊗ uKiK

)
=

R1∑
r1=1

. . .

RK∑
rK=1

[
w(r1,...,rK) ·

K∏
k=1

ukik,rk

]
(2)

where vec(·) is the vectorization and ⊗ is the Kronecker
product. As we can see from (2), every interaction be-
tween the factors across the K modes is accounted for,
{
∏K
k=1 u

k
ik,rk
|1 ≤ r1 ≤ R1, . . . , 1 ≤ rK ≤ RK}. Each in-

teraction is weighted by an element of the tensor-core. It is
easy to see that CP is a special case of Tucker decomposition
when we set all Rk = R andW to be diagonal.

Gaussian Processes (GPs) are powerful Bayesian function
estimators. Due to the nonparametric nature, GPs can au-
tomatically grasp the complexity of the target function un-
derlying the data (e.g., from linear to highly linear), not
restricted to any parametric form. Specifically, suppose
given N training examples, X = [x1, . . . ,xN]

> and y =

(y1, . . . , yN)
>, we want to learn a function f : Rd → R.

We place a GP prior over the target function, and then any fi-
nite set of the function values follow a multivariate Gaussian
distribution. Consider f = (f(x1), . . . , f(xN))

> and we
have p(f) = N (f |m,K), where m is the mean function
value at the inputs and usually set to 0, and K is an N ×N
kernel matrix — each element [K]n,n′ = κ(xn,xn′) and
κ(·, ·) is a kernel function. A commonly used, powerful
kernel is Matérn kernel,

k (xn,xn′) = σ2

(√
2ν
l α(xn,xn′)

)ν
Γ(ν)2ν−1

Kν

(√
2ν

l
α(xn,xn′)

)
where α(·, ·) is the distance function (usually the Euclidean
distance), Γ(·) is the gamma function, Kν(·) is the modified
Bessel function of the second kind, ν is the degree of free-
dom, l is length-scale and σ2 magnitude. Given f , we use a
noise model p(y|f) to fit the observed function outputs, e.g.,
p(y|f) = N (y|f , τ−1I). We can then conduct Bayesian in-
ference. The predictive distribution of the function value at
a new input x∗ is straightforward to obtain: since [f ; f(x∗)]
follows a joint Gaussian distribution as well and p(f(x∗)|f)
is a conditional Gaussian distribution.

SDE Representation of Temporal GPs. In the literature
of stochastic differential equations (SDEs) (Särkkä et al.,
2006; Oksendal, 2013), it is known that the solution of lin-
ear SDEs are Gaussian processes on time, namely, temporal
GPs. From the other side, for temporal GPs with certain
stationary kernels, we can construct an equivalent Linear
Time-Invariant (LTI) SDE through spectral analysis (Har-
tikainen and Särkkä, 2010). Take the Matérn kernel with
ν = m + 1

2 (where m ∈ N) as an example. We can ob-
tain its power spectral density as S(ω) = P (iω)qcP (−iω),

Bayesian Continuous-Time Tensor Decomposition

where P (iω) = 1
(β+iω)m+1 , i indicates the imaginary part,

β =
√

2ν/l, and qc = 2σ2π1/2β2m+1Γ(m+1)
Γ(m+1/2) . This is equiva-

lent to feeding a white noise process with diffusion qc into a
system, who transfers the signal with P (iω) to generate the
output. Via inverse Fourier transform, we know the output
process is the solution of the SDE

dm+1f(t)

dtm+1
+ am

dmf(t)

dtm
+ . . .+ a0f(t) = ξ(t), (3)

where ξ(t) is the white noise process with diffusion qc, and
a0, . . . , am are the coefficients of the zeroth, first, till m-th
term in the polynomial of P (iω)’s denominator. This can
be further written as an LTI-SDE, in which we define the

state as y(t) =
(
f(t), df(t)

dt , . . . , dfm(t)
dt

)>
, and

dy(t)

dt
= Fx(t) + Lξ(t), (4)

where

F =


0 1

.
0 1

−a0 . . . −am−1 −am

 , L =


0
...
0
1

 .

In general, although we cannot guarantee the power spec-
trum S(ω) of the kernel has a polynomial form in the de-
nominator, we can apply Taylor approximation on 1/S(ω)
to construct an approximately equivalent LTI-SDE.

3. Model
While useful, existing tensor decomposition methods use
discrete time steps, and hence can miss the temporal vari-
ations within each step. Although the latest work (Zhang
et al., 2021) employs continuous-time coefficients in the
CP decomposition (see λ in (1)), it uses polynomial splines
to model these coefficients and might not be sufficient to
capture more complex dynamics. The CP form can fur-
ther restrict its capability of capturing temporal interac-
tions between the factors across different tensor modes. To
overcome these limitations, we propose BCTT, a Bayesian
continuous-time Tucker decomposition approach.

Specifically, we model each element of the tensor-coreW
in the Tucker decomposition (2) as a time-varying (or trend)
function so as to capture the temporal interactions across
all the factor combinations. In order to flexibly estimate
a variety of complex temporal variations, we place a GP
prior over each element, wr(t) ∼ GP (0, κ(t, t′)) where
r = (r1, . . . , rK). Given the observed tensor entry val-
ues and time points, D = {(i1, t1, y1), . . . , (iN , tN , yN)},
we have a multi-variate Gaussian prior over the val-
ues of wr(·) at the observed timestamps, p(wr) =

N (wr|0,Kr), where wr = [wr(t1), . . . , wr(tN)]>, Kr

is the N × N kernel matrix on the time points and each
[Kr]n,n′ = κ(tn, tn′). Given W(tn) = {wr(tn)}r, we
sample the observed entry value from p(yn|W(tn),U) =

N
(
yn|vec (W(tn))

>
(
u1
in1
⊗ . . .⊗ uKinK

)
, τ−1

)
, where

τ is the inverse variance, for which we place a Gamma prior,
p(τ) = Gam(τ |b0, c0). Here we only consider continuous
observations. However, it is straightforward to extend our
model and inference to other types of entry values. We fur-
ther place a standard Gaussian prior over the latent factors
p(U) =

∏K
k=1

∏dk
j=1N (ukj |0, I). The joint probability is

p(U , {wr}r, τ,y) = p(U)p(τ) ·
(R1,...,RK)∏
r=(1,...,1)

N (wr|0,Kr)

·
N∏
n=1

p(yn|W(tn),U). (5)

However, a straightforward formulation as in (5) brings
in severe computational challenges. The joint probabil-
ity includes many multivariate Gaussian distributions, i.e.,
N (wr|0,Kr). When the number of time points N is large,
the calculation of each kernel matrix Kr and its inverse
(in the distribution) is extremely expensive or even infea-
sible (O(N3) time complexity). To overcome this hur-
dle, we have to seek for various sparse GP approxima-
tions (Quiñonero-Candela and Rasmussen, 2005), which
essentially use aggressive low-rank structures to approxi-
mate the kernel matrices.

To prevent sparse/low-rank approximations (which can be
of low quality), we use SDEs to formulate our model so as
to perform full GP inference with a linear cost in N . Specif-
ically, we observe that each wr(t) is actually a temporal GP.
Therefore, we can construct an equivalent LTI-SDE. For con-
venience, we use the Matérn kernel with ν = 3/2 = 1+1/2
for illustration. According to (4), for each wr(t), we define
a state γr(t) = (wr,

dwr

dt)>, and the SDE is

dγr(t)

dt
= Fγr + Lξ(t), (6)

where F = [0, 1;−β2,−2β], L = [0; 1], and the diffusion
of the white noise ξ(t) is qc = 4β3σ2. The benefit of
the LTI-SDE representation is that its discrete form (on
t1, . . . , tN) is a Gaussian Markov chain,

p(γr(t1)) = N (γr(t1)|0,P∞), (7)
p(γr(tn+1)|γr(tn)) = N (γr(tn+1)|Anγr(tn),Qn)

where P∞ = [σ2, 0; 0, β2σ2] is the stationary covariance
calculated by solving the matrix Riccati equation (Lancaster
and Rodman, 1995), ∆n = tn+1− tn is the time difference,
An = exp(F∆n), and Qn = P∞ −AnP∞A>n .

Bayesian Continuous-Time Tensor Decomposition

To represent all the temporal GPs in our model, we define
a joint state γ(t) as the concatenation of all {γr(t)}r. Ac-
cordingly, the discrete form of the SDE for γ(t) follows

p(γ1) = N (γ1|0,Σ),

p(γn+1|γn) = N (γn+1|Bnγn,Cn), (8)

where γn
∆
= γ(tn), Σ = diag(P∞, . . . ,P∞), Bn =

diag(An, . . . ,An), and Cn = diag(Qn, . . . ,Qn). As we
can see, this is essentially a state-space prior over the col-
lection of states {γn}. To extract the tensor-coreW(t), we
can use a sparse R× 2R matrix,

H =


1 0

1 0
. . .

1 0

 ,

to obtain vec(W(t)) = H · γ(t), where R is the size of the
tensor-core, R =

∏K
k=1Rk.

Now, we replace the multivariate Gaussians in (5) by the
state space prior in (8), and write the joint probability as

p(U , {γn}, τ,y) = p(U)p(τ) · p(γ1)
∏N−1

n=1
p(γn+1|γn)

N∏
n=1

N
(
yn| (Hγn)

>
(
u1
in1
⊗ . . .⊗ uKinK

)
, τ−1

)
. (9)

Since each state γn is only dependent on its previous state
γn−1 (Markov property), we no longer need to compute a
giant N ×N covariance matrix nor need low-rank approx-
imations. The state space prior enables us to develop an
efficient, linear GP inference algorithm, as presented in the
next section.

4. Algorithm
The exact posterior of our model is infeasible to calcu-
late, because the likelihood of each data point n (aris-
ing from the entry-wise Tucker decomposition (2)) cou-
ples the relevant latent factors {u1

in1
, . . .uKinK

} and state
γ(tn). To address this issue, we introduce Gaussian-Gamma
likelihood approximations, and based on Kalman filter-
ing (KF) (Kalman, 1960) and Rauch-Tung-Striebel (RTS)
smoothing (Rauch et al., 1965) we develop an efficient
message-passing algorithm in the expectation propagation
(EP) framework (Minka, 2001a). See Fig.1.

4.1. Gaussian-Gamma Approximations for Efficient
Filtering and Smoothing

Specifically, we approximate each data likelihood with

N
(
yn| (Hγn)

>
(
u1
in1
⊗ . . .⊗ uKinK

)
, τ−1

)
≈ `n

∆
= Zn ·

∏K

k=1
N
(
ukink
|mk,n

ink
,Vk,n

ink

)
· Gam (τ |bn, cn)

· N (Hγn | βn,Sn) , (10)

where Zn is a normalization term (it will be canceled during
inference). Hence we obtain the approximate posterior by

q(U , {γn}, τ) ∝
∏K

k=1

∏dk

j=1
N (ukj |0, I)Gam(τ |b0, c0)

N∏
n=1

K∏
k=1

N
(
ukink
|mk,n

ink
,Vk,n

ink

)
Gam (τ |bn, cn) (11)

p(γ1)N (Hγ1 | β1,S1)

N−1∏
n=1

p(γn+1|γn)N (Hγn | βn,Sn) .

The parameters of the approximation terms, including
{mk,n

ink
,Vk,n

ink
, bn, cn,βn,Sn}, will be updated and esti-

mated during the message-passing inference. After that,
we can obtain the (approximate) posterior of latent factors
and noise inverse variance τ by merging relevant terms,
q(ukj) ∝ N (ukj |0, I)

∏
ink

=j N (ukink
|mk,n

ink
,Vk,n

ink
), and

q(τ) ∝ Gam(τ |b0, c0)
∏N
n=1 Gam(τ |bn, cn), which have

closed forms, i.e., Gaussian or Gamma.

However, the posterior of the states γn is not easy to obtain,
because γn are chained in the state space prior. Thanks
to the Gaussian term N (Hγn | βn,Sn) introduced in (10)
— by symmetry, we can view it as N (βn|Hγn,Sn) — a
Gaussian likelihood (emission) of the virtual observation
βn following the state space prior of each γn (see the third
line of (11)). Therefore, we can apply the standard KF in
a forward pass and RTS smoothing in a backward pass to
efficiently compute all the marginal posteriors q(γn) and
q(γn,γn+1), with a linear cost in N (i.e., O(N) complex-
ity). Note that the standard KF and RTS can only be used
for Gaussian emissions but they give exact results. For non-
Gaussian likelihoods, we have to combine with extra approx-
imations, such as extended KF and unscented KF (Särkkä,
2013), which can be unstable and more costly.

4.2. Message Passing with Conditional Moment
Matching

To optimize the approximation terms in each `n (see (10)),
we develop a message- passing algorithm in the EP frame-
work. Specifically, at each step, given all `n, we first run
KF and RST smoothing to calculate the posterior of each
sate q(γn). The calculation is actually the standard message
passing in chain graphical models (Bishop, 2006). Each

Bayesian Continuous-Time Tensor Decomposition

Gaussian termN (Hγn | βn,Sn) is the initial message sent
from data point n to the state γn, then we conduct KF to
compute the message from each γn to γn+1 (forward pass),
and then RTS smoothing the messages from γn+1 to γn
(backward pass). The posterior q(γn) is obtained by aggre-
gating all the messages sent to γn (i.e., those from γn−1,
γn+1 and data point n), which ends up with a Gaussian
distribution.

Next, we use the state posteriors {q(γn)} to update the
likelihood approximation terms in {`n} via EP. Specifically,
for each data point n, we obtain a calibrated distribution by
dividing the global posterior by the current approximation,

q\n(Θn) ∝
q(γn)q(τ)

∏K
k=1 q(u

k
ink

)

`n
= N (ηn|β\n,S\n)

·
∏K

k=1
N
(
ukink
|mk,\n

ink
,V

k,\n
ink

)
Gam

(
τ |b\n, c\n

)
,

where ηn = Hγn = vec (W(tn)), and Θn =
{ηn, {ukink

}k, τ} are all the random variables present in the
n-th likelihood. The calibrated distribution integrates the
information from all the other data points, i.e., the context.
To update the terms in `n, we construct a tilted distribution,

p̃(Θn) ∝ q\n(Θn)

· N
(
yn|η>n

(
u1
in1
⊗ . . .⊗ uKinK

)
, τ−1

)
. (12)

We aim to project the tilted distribution back to our approxi-
mation family (exponential family), to obtain

q∗(Θn) = N (ηn|β∗n,S∗n) (13)

·
∏K

k=1
N
(
ukink
|mk,∗

ink
,Vk,∗

ink

)
Gam (τ |b∗n, c∗n) ,

from which we update `n terms via dividing the calibrated
distribution back,

`n ←
q∗(Θn)

q\n(Θn)
. (14)

The projection essentially is to minimize the Kullback-
Leibler divergence from p̃(Θn) to q∗(Θn), which can be
done by moment matching. For example, the Gaussian pos-
terior of ηn in (13) needs two moments — the expectation of
ηn and ηnη

>
n . So we need to compute them under the tilted

distribution so as to match the parameters of q∗(ηn), namely
β∗n = Ep̃ [ηn] and S∗n = Ep̃

[
ηnη

>
n

]
− Ep̃ [ηn]Ep̃ [η]

>.

The standard EP assumes the moment matching is computa-
tionally tractable. However, this is not the case in our model.
Since ηn and the latent factors are coupled in the product
and Kronecker product in the tilted distribution (12), we
do not have a closed form of the moments. To address this
problem, we use the idea of the conditional moment match-
ing (Wang and Zhe, 2019). Take ηn as an example. Denote

the required moments by φ(ηn) =
(
ηn,ηnη

>
n

)
. The key

observation is that we can decompose the expectation into a
nested structure,

Ep̃ [φ(ηn)] = Ep̃(Θ\ηn)

[
Ep̃(ηn|Θ\ηn)

[
φ(η)|Θ\ηn

]]
where Θ\ηn

∆
= Θn\{ηn}. Therefore, we can compute the

conditional moment first, i.e., the inner expectation, and
then take expectation over the conditional moments, i.e., the
outer-expectation. Given all the other variables Θ\ηn

fixed,
the conditioned tilted distribution p̃(ηn|Θ\ηn

) is simply a
Gaussian. Hence, the conditional moment is easy to obtain,

E
[
ηn|Θ\ηn

]
= Σn

((
S\n

)−1

β\n + τynvn

)
, (15)

E
[
ηnη

>
n |Θ\ηn

]
= Σn + E

[
ηn|Θ\ηn

]
E
[
ηn|Θ\ηn

]>
where vn = u1

in1
⊗ . . . ⊗ uKinK

and Σn =((
S\n

)−1
+ τvnv>n

)−1

.

Next, we need to take the outer-level expectation to ob-
tain the moments, namely, computing the mean of the
conditional moment under the marginal tilted distribution
p̃(Θ\ηn

). However, since p̃(Θ\ηn
) is analytically in-

tractable, the outer expectation does not have a closed form.
To tackle this issue, we observe that the moment matching is
also performed between q(Θ\ηn

) and p̃(Θ\ηn
), and hence

we can assume they are close, especially in high density
regions. We then use the current posterior as the surrogate
to compute the expected conditional moment,

Ep̃[φ(ηn)] ≈ Eq(Θ\ηn) [ρn] (16)

where ρn is the conditional moment.

Nonetheless, since ρn is a nonlinear function of the condi-
tioned variables Θ\ηn

(see (15)), we do not have a close
form to compute (16) either. But we have already known
the form of q(Θ\ηn

), so we can use the multivariate delta
method (Oehlert, 1992; Bickel and Doksum, 2015) to com-
pute the expectation easily. Specifically, we use a first-order
Taylor approximation to represent the conditional moments,

ρn(Θ\ηn
) ≈ ρn

(
Eq
[
Θ\ηn

])
+ J ·

(
vec
(
Θ\ηn

)
− vec

(
Eq
[
Θ\ηn

]))
(17)

where J is the Jacobian at Eq
[
Θ\ηn

]
. Then taking the

expectation over the Taylor approximation gives

Eq(Θ\ηn) [ρn] ≈ ρn
(
Eq
[
Θ\ηn

])
. (18)

We refer to (Oehlert, 1992; Wolter, 2007) for the theoretical
justifications and guarantees of the delta method. With the
same approach, we can compute the moments for other
random variables in Θ, including {ukink

} and τ , and obtain

Bayesian Continuous-Time Tensor Decomposition

…

Kalman Filtering (forward) RTS Smoothing (backward) Conditional Moment Matching (parallel)

SDE State (Latent
Dynamic of Tucker
Core, etc.)

Approx. Tucker
Decomp. Likelihood

Associated Factors

<latexit sha1_base64="8/eavOPZSPwjYGSg8MlmChvh3lk=">AAAB/HicbVDLSsNAFJ3UV62vapduBkuhbkoiRV0W3bisYB/QhjKZTtqhk0mYuRFCqL/ixoUibv0Qd/6NkzYLbT0wcDjnXu6Z40WCa7Dtb6uwsbm1vVPcLe3tHxwelY9PujqMFWUdGopQ9T2imeCSdYCDYP1IMRJ4gvW82W3m9x6Z0jyUD5BEzA3IRHKfUwJGGpUrtWFAYEqJSHvzOpyXxMioVbthL4DXiZOTKsrRHpW/huOQxgGTQAXReuDYEbgpUcCpYPPSMNYsInRGJmxgqCQB0266CD/HNaOMsR8q8yTghfp7IyWB1kngmcksqV71MvE/bxCDf+2mXEYxMEmXh/xYYAhx1gQec8UoiMQQQhU3WTGdEkUomL5KpgRn9cvrpHvRcC4bzftmtXWT11FEp+gM1ZGDrlAL3aE26iCKEvSMXtGb9WS9WO/Wx3K0YOU7FfQH1ucPqLyUJA==</latexit>

ln

<latexit sha1_base64="lMUYj6z9sa+4wpotgHvloiIVVB0=">AAACTnicbVFNaxsxFNS6X86mH25zzEXUGGwwZjeYNkfTXAK5JBDHBttdtFqtLaLVLtLbgBH6hb2U3PIzcskhIbTyxofEzoBgmJmHnkZxIbiGILjxam/evnv/ob7j73789PlL4+u3C52XirIhzUWuxjHRTHDJhsBBsHGhGMliwUbx5dHKH10xpXkuz2FZsFlG5pKnnBJwUtRgrfY0I7CgRJiRbUOnixP8UnECdPyWiKRfGXFqSvs7jIzhkZHWRqHt4qlIctBd/CxxUiWkjU5s1GgGvaAC3ibhmjTRGqdR43qa5LTMmAQqiNaTMChgZogCTgWz/rTUrCD0kszZxFFJMqZnpqrD4pZTEpzmyh0JuFKfTxiSab3MYpdcbas3vZX4mjcpIT2cGS6LEpikTxelpcCQ41W3OOGKURBLRwhV3O2K6YIoQsH9gO9KCDefvE0uDnrhj17/rN8c/FrXUUf76DtqoxD9RAN0jE7REFH0B92ie/Tg/fXuvEfv31O05q1n9tAL1Or/AUT3tA8=</latexit>

u1
in1

, . . . ,uK
inK

<latexit sha1_base64="oxCchRzkfbXBibOxSm3NQmpln04=">AAACbXicbVFbi9QwGE3rba2XrYoPXpDgMDgLw9DKoj4u+iLsywrOzsJ0LGmazobNpSRfhSHkzV/om3/BF/+CaXeEvfhB4HDOCd/JSdUKbiHLfkXxjZu3bt/ZuZvcu//g4W766PGx1Z2hbE610OakIpYJrtgcOAh20hpGZCXYojr71OuL78xYrtVX2LRsJcla8YZTAoEq0x/jSSEJnFIi3MJPYG+Ka3yZCQTsJWNRqmQ8KFXjOv8tL53jpVPel7mf4kLUGuwUX3AcDg7ly0OfFDqk6EO6f4ZiTaQkvt9QpqNslg2Dr4N8C0ZoO0dl+rOoNe0kU0AFsXaZZy2sHDHAqWBhW2dZS+gZWbNlgIpIZlduaMvjcWBq3GgTjgI8sBdvOCKt3cgqOPuo9qrWk//Tlh00H1aOq7YDpuj5oqYTGDTuq8c1N4yC2ARAqOEhK6anxBAK4YOSUEJ+9cnXwfHbWf5utv9lf3TwcVvHDnqBXqMJytF7dIA+oyM0RxT9jtLoWfQ8+hM/jV/Gr86tcbS98wRdmvjNX+XHuxw=</latexit>

�(t)

…

Figure 1. Graphical illustration of the message-passing inference algorithm.

Algorithm 1 BCTT

Input: D = {(i1, t1, y1), . . . , (iN , tN , yN)}, kernel
hyper-parameters l, σ2

Initialize approximation terms in (10) for each likelihood.
repeat

Run KF and RTS smoothing to compute each q(γn)
for n = 1 to N in parallel do

Simultaneously update N (Hγn|βn,Sn),
Gam(τ |bn, cn) and

{
N
(
ukink
|mk,n

ink
,Vk,n

ink

)}
k

in (10) with conditional moment matching and
multi-variate delta method.

end for
until Convergence
Return: {q(W(tn))}Nn=1, {q(ukj)}1≤k≤K,1≤j≤dk , q(τ)

their posterior in (13). Finally, we apply (14) to update the
approximation terms in the likelihood.

While the derivation of the conditional moment matching is
a bit lengthy, the implementation is straightforward. From
(18) and (16), we just need to derive the form of the condi-
tional moments (in our case, it is either Gaussian or Gamma),
and then plug in the expectation of the conditioned variables
under the current poster. For efficiency, we update the ap-
proximation factors of all the likelihoods in parallel, and
then perform damping to be stable (Minka, 2001b). We
repeatedly do message passing and conditional moment
matching until convergence. The model inference is sum-
marized in Algorithm 1.

4.3. Algorithm Complexity

In each iteration, our algorithm runs KF and RTS smoothing
to go through data twice, so as to calculate the posterior
of each state γn, and then conduct conditional moment
matching in parallel to update the likelihood approximation
for each data point. The overall time complexity is O(NR),
whereR is the size of the tensor-core. The space complexity

is O
(
N(R

2
+
∑K
k=1R

2
k)
)

which is to store the posterior
of each state and the likelihood approximation terms at each
data point. Hence, our algorithm enjoys a linear scalability
with the growth of data. Note that our algorithm fulfills the
full GP inference, without the need for any sparse or low-
rank approximations. As a comparison, the naive GP model
demands O(RN3) time and O(RN2) space complexity,
and hence can be extremely expensive or infeasible for large
N . In practice, it is possible that multiple entries were
observed at the same time point. Adjusting our method for
such cases is trivial. Since the number of states is smaller
than N accordingly, the complexity is even lower.

5. Related Work
There are many tensor decomposition methods, e.g., (Chu
and Ghahramani, 2009; Kang et al., 2012; Choi and Vish-
wanathan, 2014; Zhe et al., 2016a; Liu et al., 2018; Pan
et al., 2020b; Tillinghast and Zhe, 2021; Fang et al., 2021b;
Tillinghast et al., 2022). To utilize time information, current
methods expand the tensor with a time mode (Xiong et al.,
2010; Rogers et al., 2013; Du et al., 2018; Zhe et al., 2016b;
2015; Ahn et al., 2021; Wu et al., 2019), which comprises
a set of discrete time steps, e.g., by hours or days. The
observed entry values are then arranged into different time
slices of the tensor. The factors of the time steps and tensor
nodes are jointly learned during the decomposition. To bet-
ter estimate the temporal relationships, a few more refined
approaches model the transition between the time steps, e.g.,
a conditional linear Gaussian prior in (Xiong et al., 2010),
RNN (Wu et al., 2019), and kernel smoothing and regular-
ization in (Ahn et al., 2021). To conduct continuous-time
decomposition, the latest work (Zhang et al., 2021) uses
polynomial splines to estimate the factor coefficients (λ in
(1)) in the CP model as a time function. Another set of
works (Schein et al., 2015; 2016; Zhe and Du, 2018; Pan
et al., 2020a; Wang et al., 2020) decompose the events be-
tween the tensor nodes. The entry values are event counts
or event sequences. These methods either use Poisson pro-

Bayesian Continuous-Time Tensor Decomposition

cesses or more complex temporal point processes, such as
Hawkes processes (Hawkes, 1971). However, these meth-
ods do not consider the result of events, e.g., payment or
product ratings.

Message passing is a general inference framework in prob-
abilistic graphical models (Wainwright and Jordan, 2008).
When the model has a chain or tree structure and the fac-
tors in the graph (i.e., terms in probability) are tractable,
message passing can perform exact inference in a highly ef-
ficient way. Kalman filter and RTS smoothing are examples.
When the factors are complex (e.g., not in the exponential
family), the computation of the messages can be intractable.
Minka (2001a) proposed a more general framework, Expec-
tation propagation (EP), to handle the message computa-
tion via moment matching. However, it can still fail when
moment matching is intractable. To address this problem,
Wang and Zhe (2019) proposed conditional EP (CEP) that
uses conditional moment matching, Taylor approximations
and numerical quadrature to compute the intractable mo-
ments for fully factorized posteriors. CEP has been used
in Bayesian CP decomposition (Wang and Zhe, 2019) and
shown great performance. (Fang et al., 2021a) has used
CEP in the streaming inference of a sparse Tucker decom-
position model where a spike-and-slab prior is placed on
the tensor-core and approximated on the fly to obtain the
running posterior. Our work uses GPs to estimate a time-
varying tensor-core to handle continuous time information
in the Tucker decomposition framework. To avoid huge ker-
nel matrix computations and/or low-rank approximations,
we use LTI-SDEs to build an equivalent state-space prior,
which is essentially a Gaussian Markov chain. Under the
chain structure, we combine the message passing and mo-
ment matching for efficient inference. We use similar ideas
as in (Wang and Zhe, 2019; Fang et al., 2021a) to compute
the Gaussian messages to the SDE states. Given these mes-
sages, we then perform KF and RTS smoothing to calculate
the posterior of the SDE states in an exact way, which are
in turn used to update the approximation terms in each like-
lihood. In this way, we achieve the linear time complexity
for our Tucker-GP model.

6. Experiment
6.1. Ablation Study

We first evaluated BCTT on a synthetic task. We simu-
lated a two-mode tensor, where each mode includes 50
nodes. For each node, we generated two latent factors
that reflect a clustering structure in each mode. Specif-
ically, for the nodes in mode 1, we sampled the latent
factors u1

j from N ([−1; 1], 0.1I) for 1 ≤ j ≤ 25, and
from N ([1;−1], 0.1I) for 26 < j ≤ 50. Similarly, for the
nodes in mode 2, we sampled u2

j ∼ N ([1; 1], 0.1I) when
1 ≤ j ≤ 25, and N ([−1;−1], 0.1I) for 26 < j ≤ 50.

0.0 0.2 0.4 0.6 0.8 1.0

Learned
Ground-truth

(a) w(1,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(b) w(1,2)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(c) w(2,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(d) w(2,2)(t)

Figure 2. Recovered temporal dynamics within factor interactions.

(a) U1 (b) U2

Figure 3. The estimated latent factors by BCTT

Given the latent factors, we generate the tensor entry values
at any time t from

yi(t) = u1
i1,1u

2
i2,1w(1,1)(t) + u1

i1,1u
2
i2,2w(1,2)(t)

+ u1
i1,2u

2
i2,1w(2,1)(t) + u1

i1,2u
2
i2,2w(2,2)(t), (19)

where w(1,1)(t) = sin(2πt), w(1,2)(t) = cos(2πt),
w(2,1)(t) = sin(2πt) sin(2πt), and w(2,2)(t) =

cos(2πt) sin2(2πt). These weight functions represent the
four temporal interaction patterns between factors across the
two modes, corresponding to the tensor-coreW(t) in our
model. We generated 2K observed entries from t ∈ [0, 1].
We implemented our method BCTT with PyTorch (Paszke
et al., 2019). We use the Matérn kernel with ν = 3/2, and
set l = σ2 = 0.1. We ran our message-passing inference
until convergence. The tolerance level was set to 10−3.
Then we compared the learned tensor-coreW(t) with the
ground-truth interaction functions between every pair of the
factors across the two modes1. As we can see from Fig.

1We normalized each learned interaction function by the maxi-
mum posterior mean of the corresponding state. This is to address
the identifiablility issue, since scalingW arbitrarily then re-scaling
U accordingly do not change the Tucker decomposition loss (or
likelihood).

Bayesian Continuous-Time Tensor Decomposition

(a)W(1) (b)W(4)

(c)W(7) (d) DDT-TD

Figure 4. The structures of learned tensor-core at different time
points by BCTT (a-c) and the static tensor-score learned by dy-
namic discrete-time Tucker decomposition (DDT-TD).

2, our approach recovered each function pretty accurately,
showing that BCTT has successful captured all the temporal
dynamics within the factor interactions. Next, we show the
learned factors in each mode in Fig. 3. The colors indi-
cate the ground-truth cluster membership of the nodes. As
we can see, our learned factors clearly revealed the hidden
structures of the tensor nodes.

6.2. Real-World Applications

Next, we examined BCTT on three real-world benchmark
datasets. (1) MovieLen100K (https://grouplens.
org/datasets/movielens/), a two-mode (user,
movie) tensor, of size 610 × 9729. The entry
values are movie ratings at different time points.
We have 100, 208 observed entries and their times-
tamps. (2) AdsClick (https://www.kaggle.com/
c/avazu-ctr-prediction), a three-mode mobile
ads click tensor, (banner-position, site domain, app), of
size 7 × 2842 × 4127. We collected 50K observed en-
try values (number of clicks) at different time points (in
ten days). DBLP (https://dblp.uni-trier.de/
xml/), a three-mode tensor about bibliographic records in
computer science from 2011 to 2021, (author, conference,
keyword), of size 3731× 1935× 169. The entry values are
the numbers of publications. There are 50k entry values and
their timestamps.

Methods. We compared with following state-of-the-art
multilinear and nonparametric tensor decomposition algo-
rithms with time information integrated. (1) CT-CP (Zhang
et al., 2021), continuous-time CP decomposition, which
uses polynomial splines to estimates λ in (1) as a trend

function. (2) CT-GP, continuous-time GP decomposition,
which extends (Zhe et al., 2016a) to use GPs to learn tensor
element as a function of the latent factors and time yi(t) =
g(u1

i1
, . . . ,uKiK , t) ∼ GP(0, κ(·, ·)). (3) DT-GP, discrete-

time GP decomposition, which expands the tensor with a
discrete time mode and then applies GP decomposition. (4)
DDT-CP, dynamic discrete-time CP decomposition, which
on top of DT-CP, places an RNN-like dynamic prior over the
time factors, p(tj |tj−1) = N (tj |σ(Atj−1) +b, vI) where
σ(·) is a nonlinear activation, (5) DDT-TD and (6) DDT-
GP, dynamic discrete-time Tucker and GP decomposition,
which place the same dynamic prior as in DDT-CP.

Settings. All the methods were implemented by PyTorch.
For {CT, DT, DDT}-GP, we used the square exponen-
tial kernel and sparse variational GP inference as in (Zhe
et al., 2016b) for scalable model estimation. The num-
ber of pseudo inputs was 100. For CT-CP, we used 100
knots for the polynomial splines. Except BCTT, all the
methods were trained with stochastic mini-batch optimiza-
tion, with mini-batch size 100. We used ADAM optimiza-
tion (Kingma and Ba, 2014). The learning rate was chosen
from {10−4, 5×10−4, 10−3, 5×10−3, 10−2}. We re-scaled
all the timestamps to [0, 10] to ensure numerical stability.
We examined all the methods with the number of factors
R ∈ {3, 5, 7, 9}. Following (Xu et al., 2012; Kang et al.,
2012; Zhe et al., 2016b), we randomly sampled 80% ob-
served entry values and their time points for training, and
then tested on the remaining entries. For discrete-time de-
composition methods, we set the number of time steps to 50
(we tested with more steps but did not obtain improvement).
We repeated the experiments for five times, and examined
the average root mean-square-error (RMSE), average mean-
absolute-error (MAE), and their standard deviations.

Results. As shown in Table 1, our approach BCTT out-
performs the competing methods in all the cases except
that in Table 1d, on AdsClicks, BCTT was the second best,
and its MAE is slightly worse than CP-CT. In most cases,
the improvement obtained by BCTT is large and signifi-
cant (p < 0.05). It shows that our semi-parametric model
BCTT not only maintains the interpretable structure as in
Tucker decomposition, but also achieves a superior perfor-
mance, even to full nonparametric models, e.g., CT-GP and
DDT-GP. This might because BCTT uses the state-space
representation to enable full GP inference, without any low-
rank/sparse approximation as needed in those GP baselines.

Furthermore, we investigated if our learned tensor-core
W(t) can reflect temporal structural variations. To do so,
we setR = 7 and ran BCTT on DBLP dataset. We looked at
the tensor-core at three time points t = 1, 4, 7. The size of
the tensor-core is 7×7×7. We followed (Fang et al., 2021a)
to fold the tensor-core to a 49×7 interaction matrix for each
mode. Thus, each row expresses how strongly the combi-

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://dblp.uni-trier.de/xml/
https://dblp.uni-trier.de/xml/

Bayesian Continuous-Time Tensor Decomposition

RMSE MovieLens AdsClicks DBLP

CT-CP 1.113± 0.004 1.337± 0.013 0.240± 0.007
CT-GP 0.949± 0.008 1.422± 0.008 0.227± 0.009
DT-GP 0.963± 0.008 1.436± 0.015 0.227± 0.007
DDT-GP 0.957± 0.008 1.437± 0.010 0.225± 0.006
DDT-CP 1.022± 0.003 1.420± 0.020 0.245± 0.004
DDT-TD 1.059± 0.006 1.401± 0.022 0.232± 0.09
BCTT 0.922± 0.002 1.322± 0.012 0.214± 0.009

MAE

CT-CP 0.788± 0.004 0.787± 0.006 0.105± 0.001
CT-GP 0.714± 0.004 0.891± 0.011 0.092± 0.004
DT-GP 0.722± 0.008 0.893± 0.008 0.084± 0.003
DDT-GP 0.720± 0.003 0.894± 0.009 0.083± 0.001
DDT-CP 0.755± 0.002 0.901± 0.011 0.114± 0.002
DDT-TD 0.742± 0.006 0.866± 0.012 0.101± 0.001
BCTT 0.698± 0.002 0.777± 0.016 0.084± 0.001

(a) R = 3

RMSE MovieLens AdsClicks DBLP

CT-CP 1.165± 0.008 1.324± 0.013 0.263± 0.006
CT-GP 0.965± 0.019 1.410± 0.015 0.227± 0.007
DT-GP 0.949± 0.007 1.425± 0.015 0.225± 0.008
DDT-GP 0.948± 0.005 1.421± 0.012 0.220± 0.006
DDT-CP 1.141± 0.007 1.623± 0.013 0.282± 0.011
DDT-TD 0.944± 0.003 1.453± 0.035 0.312± 0.072
BCTT 0.895± 0.007 1.304± 0.018 0.202± 0.009

MAE

CT-CP 0.835± 0.006 0.792± 0.007 0.128± 0.001
CT-GP 0.717± 0.012 0.883± 0.016 0.092± 0.002
DT-GP 0.714± 0.005 0.886± 0.012 0.084± 0.001
DDT-GP 0.707± 0.004 0.882± 0.015 0.082± 0.003
DDT-CP 0.843± 0.003 1.082± 0.013 0.141± 0.004
DDT-TD 0.712± 0.002 0.903± 0.024 0.221± 0.047
BCTT 0.679± 0.001 0.785± 0.010 0.080± 0.001

(b) R = 7

RMSE MovieLens AdsClicks DBLP

CT-CP 1.026± 0.002 1.335± 0.012 0.244± 0.005
CT-GP 0.970± 0.011 1.425± 0.011 0.229± 0.009
DT-GP 0.952± 0.012 1.428± 0.015 0.226± 0.007
DDT-GP 0.949± 0.007 1.417± 0.013 0.226± 0.007
DDT-CP 1.087± 0.012 1.515± 0.023 0.257± 0.006
DDT-TD 1.050± 0.005 1.403± 0.053 0.277± 0.026
BCTT 0.901± 0.002 1.317± 0.046 0.204± 0.009

MAE

CT-CP 0.813± 0.003 0.796± 0.006 0.112± 0.001
CT-GP 0.731± 0.007 0.890± 0.012 0.093± 0.002
DT-GP 0.720± 0.016 0.888± 0.011 0.085± 0.001
DDT-GP 0.715± 0.003 0.879± 0.016 0.085± 0.001
DDT-CP 0.807± 0.003 0.958± 0.012 0.120± 0.002
DDT-TD 0.784± 0.015 0.831± 0.038 0.171± 0.043
BCTT 0.684± 0.001 0.776± 0.013 0.082± 0.001

(c) R = 5

RMSE MovieLens AdsClicks DBLP

CT-CP 1.188± 0.002 1.335± 0.015 0.265± 0.004
CT-GP 0.935± 0.009 1.406± 0.008 0.227± 0.008
DT-GP 0.945± 0.005 1.410± 0.003 0.222± 0.008
DDT-GP 0.939± 0.003 1.411± 0.004 0.217± 0.003
DDT-CP 1.117± 0.011 1.580± 0.022 0.292± 0.007
DDT-TD 0.956± 0.005 1.473± 0.045 0.345± 0.096
BCTT 0.891± 0.003 1.308± 0.026 0.198± 0.006

MAE

CT-CP 0.856± 0.003 0.786± 0.007 0.131± 0.001
CT-GP 0.703± 0.006 0.889± 0.009 0.094± 0.004
DT-GP 0.713± 0.003 0.880± 0.003 0.082± 0.002
DDT-GP 0.706± 0.005 0.874± 0.004 0.080± 0.001
DDT-CP 0.872± 0.006 1.024± 0.013 0.155± 0.005
DDT-TD 0.718± 0.004 0.923± 0.034 0.201± 0.053
BCTT 0.678± 0.002 0.787± 0.008 0.079± 0.002

(d) R = 9

Table 1. Prediction error and standard deviation. The results were averaged over five runs.

nation of factors in other modes interact with the factors in
the current mode. To reflect the structure, we ran Principled
Component Analysis (PCA), and show the first and second
principled components in a plane. We also tested DDT-TD
which learns a static tensor-core but using time factors and
nonlinear dynamics. We looked at the results at mode 1. As
shown in Fig. 4 a-c, we can see a clear structural variation.
At t = 1, the tensor-core elements are quite concentrated,
showing somewhat homogeneous interactions. The case
is similar at t = 4 but the interaction strengths are more
scattered. However, at t = 7, the strengths clearly formed
four groups, exhibiting heterogeneous interaction patterns —
a major shift. Together these imply the interaction between
factors evolve with time. As a comparison, the tensor-core
learned by DDT-TD do not reflect apparent structures or
temporal patterns. It is inconvenient to examine how the
interactions between the factors of the tensor nodes evolve.

7. Conclusion
We proposed BCTT, a continuous-time dynamic Tucker de-
composition method. Our model maintains the interpretable
structure while is flexible enough to capture various tempo-
ral dynamics within the factor interactions. Our LTI-SDE
based message-passing inference avoids sparse GP approxi-
mations and enjoys a linear scalability with the data growth.

Acknowledgments
This work has been supported by MURI AFOSR grant
FA9550-20-1-0358, NSF IIS-1910983, NSF CAREER
Award IIS-2046295 and NSF DMS-1848508. We thank
Shibo Li for implementing several baseline methods.

Bayesian Continuous-Time Tensor Decomposition

References
Ahn, D., Jang, J.-G., and Kang, U. (2021). Time-aware ten-

sor decomposition for sparse tensors. Machine Learning,
pages 1–22.

Bickel, P. J. and Doksum, K. A. (2015). Mathematical
statistics: basic ideas and selected topics, volume I, vol-
ume 117. CRC Press.

Bishop, C. M. (2006). Pattern recognition and machine
learning. springer.

Choi, J. H. and Vishwanathan, S. (2014). Dfacto: Dis-
tributed factorization of tensors. In Advances in Neural
Information Processing Systems, pages 1296–1304.

Chu, W. and Ghahramani, Z. (2009). Probabilistic models
for incomplete multi-dimensional arrays. AISTATS.

Du, Y., Zheng, Y., Lee, K.-c., and Zhe, S. (2018). Proba-
bilistic streaming tensor decomposition. In 2018 IEEE
International Conference on Data Mining (ICDM), pages
99–108. IEEE.

Fang, S., Kirby, R. M., and Zhe, S. (2021a). Bayesian
streaming sparse tucker decomposition. In Uncertainty
in Artificial Intelligence, pages 558–567. PMLR.

Fang, S., Wang, Z., Pan, Z., Liu, J., and Zhe, S. (2021b).
Streaming Bayesian deep tensor factorization. In
International Conference on Machine Learning, pages
3133–3142. PMLR.

Harshman, R. A. (1970). Foundations of the PARAFAC pro-
cedure: Model and conditions for an”explanatory”multi-
mode factor analysis. UCLA Working Papers in
Phonetics, 16:1–84.

Hartikainen, J. and Särkkä, S. (2010). Kalman filtering
and smoothing solutions to temporal gaussian process
regression models. In 2010 IEEE international workshop
on machine learning for signal processing, pages 379–
384. IEEE.

Hawkes, A. G. (1971). Spectra of some self-exciting and
mutually exciting point processes. Biometrika, 58(1):83–
90.

Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos,
C. (2012). Gigatensor: scaling tensor analysis up by
100 times-algorithms and discoveries. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 316–324.
ACM.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kolda, T. G. (2006). Multilinear operators for higher-order
decompositions, volume 2. United States. Department of
Energy.

Lancaster, P. and Rodman, L. (1995). Algebraic riccati
equations. Clarendon press.

Liu, B., He, L., Li, Y., Zhe, S., and Xu, Z. (2018). Neuralcp:
Bayesian multiway data analysis with neural tensor de-
composition. Cognitive Computation, 10(6):1051–1061.

Minka, T. P. (2001a). Expectation propagation for ap-
proximate Bayesian inference. In Proceedings of
the Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369.

Minka, T. P. (2001b). A family of algorithms for
approximate Bayesian inference. PhD thesis, Mas-
sachusetts Institute of Technology.

Oehlert, G. W. (1992). A note on the delta method. The
American Statistician, 46(1):27–29.

Oksendal, B. (2013). Stochastic differential equations: an
introduction with applications. Springer Science & Busi-
ness Media.

Pan, Z., Wang, Z., and Zhe, S. (2020a). Scalable nonpara-
metric factorization for high-order interaction events. In
International Conference on Artificial Intelligence and
Statistics, pages 4325–4335. PMLR.

Pan, Z., Wang, Z., and Zhe, S. (2020b). Streaming non-
linear bayesian tensor decomposition. In Conference
on Uncertainty in Artificial Intelligence, pages 490–499.
PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural
information processing systems, 32:8026–8037.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A
unifying view of sparse approximate gaussian process
regression. The Journal of Machine Learning Research,
6:1939–1959.

Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum
likelihood estimates of linear dynamic systems. AIAA
journal, 3(8):1445–1450.

Rogers, M., Li, L., and Russell, S. J. (2013). Multilinear
dynamical systems for tensor time series. Advances in
Neural Information Processing Systems, 26:2634–2642.

Bayesian Continuous-Time Tensor Decomposition

Särkkä, S. (2013). Bayesian filtering and smoothing. Num-
ber 3. Cambridge University Press.

Särkkä, S. et al. (2006). Recursive Bayesian inference on
stochastic differential equations. Helsinki University of
Technology.

Schein, A., Paisley, J., Blei, D. M., and Wallach, H. (2015).
Bayesian poisson tensor factorization for inferring mul-
tilateral relations from sparse dyadic event counts. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1045–1054. ACM.

Schein, A., Zhou, M., Blei, D. M., and Wallach, H.
(2016). Bayesian poisson tucker decomposition for
learning the structure of international relations. In
Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, ICML’16, pages 2810–2819. JMLR.org.

Tillinghast, C., Wang, Z., and Zhe, S. (2022). Non-
parametric sparse tensor factorization with hierarchi-
cal Gamma processes. In International Conference on
Machine Learning. PMLR.

Tillinghast, C. and Zhe, S. (2021). Nonparametric decom-
position of sparse tensors. In International Conference
on Machine Learning, pages 10301–10311. PMLR.

Tucker, L. (1966). Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279–311.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical
models, exponential families, and variational inference.
Now Publishers Inc.

Wang, Z., Chu, X., and Zhe, S. (2020). Self-modulating
nonparametric event-tensor factorization. In International
Conference on Machine Learning, pages 9857–9867.
PMLR.

Wang, Z. and Zhe, S. (2019). Conditional expectation prop-
agation. In UAI, page 6.

Wolter, K. (2007). Introduction to variance estimation.
Springer Science & Business Media.

Wu, X., Shi, B., Dong, Y., Huang, C., and Chawla,
N. V. (2019). Neural tensor factorization for tempo-
ral interaction learning. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pages 537–545.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and
Carbonell, J. G. (2010). Temporal collaborative filter-
ing with bayesian probabilistic tensor factorization. In
Proceedings of the 2010 SIAM International Conference
on Data Mining, pages 211–222. SIAM.

Xu, Z., Yan, F., and Qi, Y. A. (2012). Infinite tucker decom-
position: Nonparametric bayesian models for multiway
data analysis. In ICML.

Zhang, Y., Bi, X., Tang, N., and Qu, A. (2021). Dynamic ten-
sor recommender systems. Journal of Machine Learning
Research, 22(65):1–35.

Zhe, S. and Du, Y. (2018). Stochastic nonparametric
event-tensor decomposition. In Advances in Neural
Information Processing Systems, pages 6856–6866.

Zhe, S., Qi, Y., Park, Y., Xu, Z., Molloy, I., and Chari, S.
(2016a). Dintucker: Scaling up Gaussian process models
on large multidimensional arrays. In Thirtieth AAAI
conference on artificial intelligence.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015).
Scalable nonparametric multiway data analysis. In
Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, pages 1125–
1134.

Zhe, S., Zhang, K., Wang, P., Lee, K.-c., Xu, Z., Qi, Y., and
Ghahramani, Z. (2016b). Distributed flexible nonlinear
tensor factorization. In Advances in Neural Information
Processing Systems, pages 928–936.

