BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Spotlight Paper of ICML 2024

Presenter: Shikai Fang

Shikai Fang, Qingsong Wen, Yingtao Luo, Shandian Zhe, Liang Sun

https://github.com/xuangu-fang/BayOTIDE

Imputation of Multi-Var. Time Series

- Time series data is ubiquitous
- The same with missing values...
- Robust and efficient imputation is crucial

Energy

Traffic

Finance

Limitations of current methods

- Regulate timestamp -> underuse **continuous** temporal info.
- Sensitive to noise -> call for **uncertainty-aware** model
- Black-box model -> lack of interpretability
- **Offline** infer. -> not efficient for fast-generated streaming seq.

BayOTIDE: Bayesian online TS Imputation

Properties / Methods	BayOTIDE	TIDER	Statistic-based	DNN-based	Diffusion-based
Uncertainty-aware		×	×	×	√ ×
Continuous modeling	<i>✓</i>	×	×	×	×
Inference manner	online	offline	offline	offline	offline

Table 1: Comparison of *BayOTIDE* and main-stream multivariate time series imputation methods. \checkmark means only partial models in the family have the property, or it's not clear in the original paper. For example, only deep models with probabilistic modules can offer uncertainty quantification, such as GP-VAE (Fortuin et al., 2020), but most deep models cannot. The diffusion-based CSDI (Tashiro et al., 2021) and CSBI (Chen et al., 2023) take timestamps as input, but the model is trained with discretized time embedding.

Method: Function Decomposition

Imputation ⇔ Low-rank function approximation

$$\mathbf{X}(t) = \mathbf{U}\mathbf{V}(t) = \begin{bmatrix} \mathbf{U}_{\text{trend}}, \mathbf{U}_{\text{season}} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\text{trend}}(t), \\ \mathbf{v}_{\text{season}}(t) \end{bmatrix}$$

 $D_r + D_s << D$

Latent temporal functions (trend + seasonal factors)

Weights

$$\mathbf{v}_{\text{trend}}(t) = \text{concat}[v_{\text{trend}}^{i}(t)]_{i=1...D_{r}},$$

$$\mathbf{v}_{\text{season}}(t) = \text{concat}[v_{\text{season}}^{j}(t)]_{j=1...D_{s}},$$

Gaussian Processes (GP) as function estimator

$$\begin{bmatrix} \mathbf{v}_{\text{trend}}(t) = \text{concat}[v_{\text{trend}}^{i}(t)]_{i=1...D_{r}}, \\ \mathbf{v}_{\text{season}}(t) = \text{concat}[v_{\text{season}}^{j}(t)]_{j=1...D_{s}}, \end{bmatrix}$$

 $\begin{bmatrix} v_{\text{trend}}^{i}(t) \sim \mathcal{GP}(0, \kappa_{\text{Matérn}}) \\ v_{\text{season}}^{j}(t) \sim \mathcal{GP}(0, \kappa_{\text{periodic}}) \end{bmatrix}$

Facts of GPs:

- Powerful prob. functional model
- Characterized by kernel:

State-Space Gaussian Process

Linear-Cost GP with Chain-Structure

Joint Prob. of BayOTIDE

States of temporal factors.

Bayesian Online Learning

- Online learning/ Straming Inference: data come, model update, date drops
- Principple: Incremental version of Bayes' rule:

Posterior on old data

$$p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\text{old}} \cup \mathcal{D}_{\text{new}}\right) \propto p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\text{old}}\right) p\left(\mathcal{D}_{\text{new}} \mid \boldsymbol{\theta}\right)$$

Posterior on all data

Likelihood on current model

Online Learning ⇔ Kalman Filter!

Moment Matching & Message Passing

Moment Matching & Message Passing

Conditional Moment-Matching

$$p(y_{n+1}^d \mid \Theta) \approx \mathcal{Z} f_{n+1}^d (\mathbf{Z}(t_{n+1})) f_{n+1}^d (\mathbf{u}_d) f_{n+1}^d (\tau)$$

Observation llk. (Gaussian) Msgs to **multi**-factors (Gaussian) Msgs to **weights and noise** (Gaussian & Gamma)

• Message passing and merging

 $q(\tau | \mathcal{D}_{t_{n+1}}) = q(\tau | \mathcal{D}_{t_n}) \prod_{d=1}^{D} f_{n+1}^d(\tau)$

 $q(\mathbf{u}^d | \mathcal{D}_{t_{n+1}}) = q(\mathbf{u}^d | \mathcal{D}_{t_n}) f_{n+1}^d(\mathbf{u}^d)$

All closed-form update!

$$q(\mathbf{Z}(t_{n+1})) = q(\mathbf{Z}(t_n))p(\mathbf{Z}(t_{n+1})|\mathbf{Z}(t_n)) \prod_{d=1} f_{n+1}^d(\mathbf{Z}(t_{n+1}))$$

Moment Matching & Message Passing

Conditional Moment-Matching

$$p(y_{n+1}^d \mid \Theta) \approx \mathcal{Z} f_{n+1}^d (\mathbf{Z}(t_{n+1})) f_{n+1}^d (\mathbf{u}_d) f_{n+1}^d (\tau)$$

Observation llk. (Gaussian) Msgs to **multi**-factors (Gaussian)

Msgs to **weights and noise** (Gaussian & Gamma)

All closed-form update!

• Message passing and merging

$$q(\tau | \mathcal{D}_{t_{n+1}}) = q(\tau | \mathcal{D}_{t_n}) \prod_{d=1}^{D} f_{n+1}^d(\tau)$$

$$q(\mathbf{u}^d | \mathcal{D}_{t_{n+1}}) = q(\mathbf{u}^d | \mathcal{D}_{t_n}) f_{n+1}^d(\mathbf{u}^d)$$

$$q(\mathbf{Z}(t_{n+1})) = q(\mathbf{Z}(t_n))p(\mathbf{Z}(t_{n+1})|\mathbf{Z}(t_n)) \prod_{d=1} f_{n+1}^d(\mathbf{Z}(t_{n+1}))$$

Algorithm of BayOTIDE

Algorithm 1 BayOTIDE

Input: observation $\mathbf{Y} = \{\mathbf{y}_n\}_{n=1}^N$ over $\{t_n\}_{n=1}^N$, D_s, D_r , the kernel hyperparameters. Initialize $q(\tau), q(\mathcal{W}), \{q(\mathbf{Z}(t_n))\}_{n=1}^N$. for t = 1 to N do

Approximate messages by (12) for all observed channels in parallel.

Update posterior of τ and U by (13) and (14) for all observed channels in parallel.

Update posteriors of $\mathbf{Z}(t)$ using Kalman filter by (15).

end for

Run RTS smoother to obtain the full posterior of $\mathbf{Z}(t)$. Return: $q(\tau), q(\mathcal{W}), \{q(\mathbf{Z}(t_n))\}_{n=1}^N$

Allow prob. imputation over **arbitrary timestamp** (even never seen in training)

Could be irregulate

- Parallel over channels
- Online update for all para.

Experiments: Simulation

Recovered series Ground truth **20% noisy observations** Observed data $\mathbf{U} = \left(\begin{array}{rrrr} 1 & 1 & -2 & -2 \\ 0.4 & 1 & 2 & -1 \\ -0.3 & 2 & 1 & -1 \\ -1 & 1 & 1 & 0.5 \end{array} \right), \$ (a) Imputation results of the four-channel synthetic time series. $\mathbf{V}(t) = \begin{pmatrix} 10t, \\ \sin(20\pi t), \\ \cos(40\pi t), \\ \sin(60\pi t) \end{pmatrix}.$ 10 Learned factor Real factor -3 -10 (b) Channel#1's factors (c) Channel#2's factors (d) Channel#3's factors (e) Channel#4's factors

Experiments on real-world tasks

Observed-ratio=50%	Traffic-GuangZhou			Solar-Power			Uber-Move		
Metrics	RMSE	MAE	CRPS	RMSE	MAE	CRPS	RMSE	MAE	CRPS
Deterministic & Offline									
SimpleMean	9.852	7.791	-	3.213	2.212	-	5.183	4.129	-
BRITS	4.874	3.335	-	2.842	1.985	-	2.180	1.527	-
NAOMI	5.986	4.543	-	2.918	2.112	-	2.343	1.658	-
SAITS	4.839	3.391	-	2.791	1.827	-	1.998	1.453	-
TIDER	4.708	3.469	-	1.679	0.838	-	1.959	1.422	-
Probabilistic & Offline									
Multi-Task GP	4.887	3.530	0.092	2.847	1.706	0.203	3.625	2.365	0.121
GP-VAE	4.844	3.419	0.084	3.720	1.810	0.368	5.399	3.622	0.203
CSDI	4.813	3.202	0.076	2.276	0.804	0.166	1.982	1.437	0.072
CSBI	4.790	3.182	0.074	2.097	1.033	0.153	1.985	1.441	0.075
Probabilistic & Online									
BayOTIDE-fix weight	11.032	9.294	0.728	5.245	2.153	0.374	5.950	4.863	0.209
BayOTIDE-trend only	4.188	2.875	0.059	1.789	0.791	0.132	2.052	1.464	0.067
BayOTIDE	3.820	2.687	0.055	1.699	0.734	0.122	1.901	1.361	0.062

Table 2: RMSE, MAE and CRPS scores of imputation results of all methods on three datasets with observed ratio = 50%.

Online beats offline!

Scalability of BayOTIDE

(b) Scalability over time series length. (c) Scalability over the channels number.

Thanks.

https://github.com/xuangu-fang/BayOTIDE

Github Repo