
BAYESIAN TENSOR DECOMPOSITION FOR DYNAMIC DATA

PROPOSAL

Shikai Fang
Kahlert School of Computing & Scientific Computing and Image Institute

The University of Utah
shikai.fang@utah.edu

1 Introduction

Tensor data is a type of multidimensional data that arises in many real-world applications. This data structure is a natural
representation of information that has multiple modes or dimensions, such as time, space, and type. In recent years,
the use of tensor data has become increasingly common in a wide range of fields, including recommendation systems,
neuroscience, and climate modeling, among others. For example, in recommendation systems, a three-mode tensor:
user, item, website can be extracted, whose entry values represent user-item interactions along the different websites.
In climate modeling, 4-mode tensor: longitude latitude, altitude, time tensors are used to represent spatiotemporal
data, such as satellite measurements of temperature change. While in neuroscience, they are used to model brain
activity with multiple modalities. However, analyzing tensor data poses unique challenges due to its high dimensionality
and complex structure. One promising approach to address these challenges is tensor decomposition, which aims to
decompose a tensor into a set of low-rank representations, known as factors. This allows for more efficient processing,
analysis, and interpretation of tensor data, and has led to the development of new methods for machine learning, data
mining, and signal processing.

Classical tensor decomposition methods, such as CANDECOMP/PARAFAC (CP) (Harshman, 1970) and Tucker
decomposition (Tucker, 1966), have been widely used in the analysis of tensor data. However, these methods have two
main limitations when it comes to dynamic data. First, they are designed to run the factorization from scratch every
time when receive a new set of entries, and are not well-suited to handle data that arrives in a dynamic way, known
as streaming data. In this sense, the term "dynamic" refers to the manner in which the data arrives. Second, classical
tensor decomposition methods do not take into account dynamic features of the data, such as timestamps. This means
that they are not able to capture changes of temporal patterns in the data. In this sense, the term "dynamic" refers to
the time-varying nature of the data. Additionally, these methods can result in dense models that are at high risk of
overfitting when applied to complex tensor data, such as those encountered in deep neural network-based models.

To address these challenges, we propose a range of model designs and efficient algorithms using the Bayesian framework.
Specifically, we propose a Bayesian tensor decomposition methods with the following abilities to model dynamic data:

• Efficient Streaming Inference: The proposed methods are designed to handle streaming data and conduct
efficient online learning inference, which enables the incremental update of the model parameters, rather than
starting from scratch as new data arrives. This approach is computationally efficient and can be applied to
large-scale data sets in real time.

• Temporal Pattern Modeling: The proposed method is capable of capturing the temporal features present in
tensor data and modeling the time-varying patterns of the data in a continuous and dynamic manner.

• Flexible Priors and Interpretability: The models can be assigned over different priors to fit the needs of
various scenarios. Furthermore, the final learned tensor factors can be used to interpret the underlying structure
of the data and provide insights into the data.

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

To solve those problems, we will present our contribution to Bayesian tensor learning for dynamic data in the following
sections. Section 2 will provide background on the key concepts and methods used in our research, including Bayesian
tensor decomposition, Assumed Density Filter (ADF) framework and Gaussian Process.

In Section 3, we will provide a detailed introduction of three of our previous works:

• Bayesian Streaming Sparse Tucker(BASS) (Fang et al., 2021a): BASS developed the one-shot incremental
update with conditional moment-matching and Delta’s method to handle streaming tensor data and applies
sparse priors over the Tucker core.

• Streaming Bayesian Deep Tensor Factorization(SBDT) (Fang et al., 2021b): With Assumed Density Filter
(ADF) and message passing, SBDT applies streaming inference and slab-and-spike priors to DNN-based
tensor models, which have a greater capacity to capture nonlinear relationships in data without overfitting
risks.

• Bayesian Continuous-Time Tucker decomposition(BCTT) (Fang et al., 2022): BCTT models the Tucker
core as a time-varying function using the stochastic differential equation (SDE) representation of the Gaussian
Process (GP) and is capable of modeling temporal patterns in a continuous and dynamic manner.

In Section 4, we will present our proposed research to combine the two meanings of "dynamic": streaming and temporal
model together, to give a unified framework to model the temporal Bayesian tensor decomposition in a streaming
manner.

2 Background

2.1 Bayesian Tensor Decomposition

Standard Tensor Decomposition Standard tensor decomposition methods operate under the assumption that a K-mode
tensor Y ∈ Rd1×···×dK contains dk independent and individual objects, or "nodes," in each mode k. Each entry in the
tensor is indexed by a K-size tuple i = (i1, . . . , iK), with the corresponding value denoted as yi. To decompose the
tensor into a compact and low-rank form, K groups of latent factor matrices are used to represent the objects in each
mode. These matrices are denoted as U = {U1 . . .UK}, where Uk =

[
uk
1 . . .u

k
dk

]⊤ ∈ Rdk×rk . Each uk
j ∈ Rrk×1

represents the latent factor for the j-th object in the k-th mode, where rk is the predefined rank of the k-th mode.

Based on the assumption that each entry value yi = y(i1,...,iK) represents the interaction, denoted as f , of corresponding
latent factors in each mode u1

i1
, . . . ,uK

iK
, the specific form of interaction function could vary. The classic CANDE-

COMP/PARAFAC (CP) (Harshman, 1970) assumes r1 = r2 · · · = rK and designs f as a rank-wise product of all latent
factors, followed by a sum-over procedure:

yi ≈ f(u1
i1 , . . . ,u

K
iK) =

(
u1
i1 ◦ . . . ◦ uK

iK

)⊤
1 (1)

where ◦ is the element-wise product (also known as Hadamard product) and 1 is a constant all-one vector.

Tucker decomposition (Tucker, 1966) takes one more step towards a more expressive interaction. It parameterizes the
f with a core tensorW ∈ Rr1×···×rK , which models the interaction as the sum over all possible cross-rank products
weighted byW among the latent factors. Specifically, the element-wise formula is:

yi ≈ f(u1
i1 , . . . ,u

K
iK) = vec(W)⊤

(
u1
i1 ⊗ . . .⊗ uK

iK

)
(2)

where⊗ is the Kronecker product and vec(·) is the vectorization operator. Tucker decomposition allows different ranks
for each mode, making it more flexible than CP. It will degenerate to CP if we set all modes’ ranks equal and W
diagonal.

Bayesian framework In the Bayesian framework, the observed entry values of tensor Y is assumed to be generated
from the decomposition model f with Gaussian noise, i.e.,yi ≈ N (yi | f(u1

i1
, . . . ,uK

iK
), τ−1), where τ is the precision

of the noise. We further set the prior distribution of the latent factors is assumed to be Gaussian, i.e., p(uk
j) ∼ N (0, I),

and the prior of the τ be Gamma distribution, i.e., p(τ) = Gamma(α, β). Then the cannon form of the joint probability
of Bayesian tensor decomposition is:

pf (yi,U , τ) = p(U)p(τ)N (yi | f(u1
i1 , . . . ,u

K
iK), τ−1) (3)

2

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

2.2 Assumed Density Filtering: Bayesian Online Learning

Assumed-Density Filtering (ADF) (Boyen and Koller, 2013), also known as Bayesian online learning, is a Bayesian
inference framework that allows for the efficient online posterior update for new data. It can be viewed as an online
version of expectation propagation (EP) (Minka, 2001a), and is a special case of the more general class of streaming
variational inference methods (Broderick et al., 2013). ADF is based on the incremental version of Bayes’ rule:

p (θ | Dold ∪ Dnew) ∝ p (θ | Dold) p (Dnew | θ) (4)

where Dold is the data observed so far, Dnew is the new data, and θ is the parameter of interest.

The key idea of ADF is to approximate the posterior distribution of the parameters θ by a tractable distribution
qold (θ) in the exponential family, i.e. Gaussian distribution, that is close to the true posterior p(θ | Dold). Then, the
new data Dnew arrives, ADF integrates the current qold (θ) along with the data likelihood p (Dnew | θ) and build an
unnormalized distribution: p̃(θ) = qcur(θ)p (Dnew | θ). Then ADF projects the unnormalized distribution p̃(θ) to the
exponential family to obtain the updated posterior qnew (θ) through moment matching. Finally, ADF updates the current
approximation qold (θ) to qnew (θ), which is then used to approximate the true posterior p(θ | Dold ∪ Dnew). Thanks to
the property of exponential family distribution, the projection of p̃(θ) to the qnew (θ) can be done analytically:

µ∗ = µ+ v
∂ logZ

∂µ
(5)

v∗ = v − v2
[(

∂ logZ

∂µ

)2

− 2
∂ logZ

∂v

]
(6)

where µ and v are the mean and variance of qold (θ), µ∗ and v∗ are the mean and variance of qnew (θ), and Z is the
normalization constant of p̃(θ).

2.3 Gaussian Process

Gaussian Process (GP) (Rasmussen and Williams, 2006) is a powerful non-parametric Bayesian model that can be used
to model a wide range of functions. It is a generalization of the multivariate Gaussian distribution to infinite-dimensional
spaces. The key idea of GP is to represent a function f(·) as a random variable:

f ∼ GP(m(·), κ(·, ·)) (7)

where m(·) is the mean function and κ(·, ·) is the covariance function. The mean function m(·) is a deterministic
function that is used to model the mean of the function, always set as 0 The covariance function κ(·, ·) is a positive
definite function that is used to model the correlation between the function values at different points, also known as
kernel function. One of the most popular and powerful kernel is Matérn kernel:

κ(x, x′) = σ2 2
1−ν

Γ(ν)

(√
2ν

l
∆

)ν

Kν

(√
2ν

l
∆

)
(8)

where ∆ is the distance measure between x and x′, always set as Euclidean: ∆ = |x− x′|; ν is a half-integer positive
number of kernel smoothness; {l, σ2} are the length-scale and magnitude parameter, respectively;Γ is the gamma
function, Kν is the modified Bessel function of the second kind. With finite N observations of {(xi, yi)}Ni=1, GP prior
(7) will turn out a multivariate Gaussian distribution: p(f(x)) = N (0,K). K ∈ RN×N is the kernel matrix, whose
element [K]i,j is computed through the kernel κ(xi, xj).

3 Research As Far

3.1 Bayesian Streaming Sparse Tucker Decomposition (BASS)

Tucker decomposition (Tucker, 1966) is a classical tensor factorization model. Compared with the most widely
used CP decomposition, Tucker model is much more flexible and interpretable in that it accounts for every possible

3

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

(multiplicative) interaction between the factors in different modes. However, this also brings in the risk of overfitting
and computational challenges, especially in the case of fast streaming data. To address these issues, we develop BASS,
a BAyesian Streaming Sparse Tucker decomposition method. We place a spike-and-slab prior over the core tensor
elements to automatically select meaningful factor interactions so as to prevent overfitting and to further enhance the
interpretability. To enable efficient streaming factorization, we use conditional moment matching and delta method to
develop one-shot incremental update of the latent factors and core tensor upon receiving each streaming batch. Thereby,
we avoid processing the data points one by one as in the standard assumed density filtering, which needs to update the
core tensor for each point and is quite inefficient. We explicitly introduce and update a sparse prior approximation in
the running posterior to fulfill effective sparse estimation in the streaming inference. We show the advantage of BASS
in several real-world applications.

3.1.1 Model

Tucker decomposition (Tucker, 1966) is much more flexible than the most commonly used CP decomposition in that it
combines all possible (multiplicative) factor interactions across the modes (see (2)) to reconstruct the tensor entries.
However, such flexibility can also cause significant challenges in modeling and computation. First, assuming every
factor interaction is taking effect in generating the entry values can make the model overly complex, especially given
that in most applications, the data are extremely sparse, i.e., the number of observed entries is far less than the tensor
size. This modeling assumption can increase the risk of overfitting. Second, we have to estimate an extra parametric
core-tensorW , of size R1 × . . .×RK , which is relatively large. The joint estimation ofW and U can be much more
costly, especially when we handle streaming data, where each newly observed entry might incur a whole update ofW .
To address these challenges, we propose a BASS model and develop an efficient one-shot streaming posterior inference
algorithm..

Specifically, we formulate the Tucker decomposition in a Bayesian framework. We first sample the latent factors in
each mode from the standard Gaussian prior distribution,

p(U) =
K∏

k=1

dk∏
j=1

N (uk
j |0, I). (9)

Next, to sample the core tensorW , we place a spike-and-slab prior (Ishwaran and Rao, 2005; Titsias and Lázaro-
Gredilla, 2011) over each element ofW ,

p(S|ρ0) =
(R1,...,RK)∏
j=(1,...,1)

Bern(sj|ρ0), p(W|S) =
∏
j

sjN (wj|0, σ2
0) + (1− sj)δ(wj), (10)

where S is a binary tensor of the same size withW , Bern(·) is the Bernoulli distribution, and δ(·) is the Dirac-delta
function.

Give the latent factors U and core tensorW , we sample each observed entry value yi from

p(yi|U ,W, τ) = N
(
yi|W ×1

(
u1
i1

)⊤ ×2 . . .×K

(
uK
iK

)⊤
, τ−1

)
,

= N

yi| R1∑
j1=1

. . .

RK∑
jK=1

[
w(j1,...,jK) ·

K∏
k=1

ukik,jk

]
, τ−1

 , (11)

where ×k the mode-k tensor matrix product (Kolda, 2006), τ is the inverse of the noise variance. We claim (11) is equal
(2) to Now, combining with (10), we can see that according to the selection indicators in S , ineffective or useless core-
tensor elements will concentrate around 0, and hence deactivate the corresponding factor interactions (i.e.,

∏K
k=1 u

k
ik,jk

).
Through the posterior inference of S, we can automatically identify effective interactions, discarding the ineffective
ones, to reduce the model complexity, alleviate overfitting, and also to enhance the interpretability. Throughout this
paper, we focus on continuous entry values, and hence use the Gaussian distribution. It is straightforward to extend our
model and inference algorithm with other likelihoods or link functions.

4

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

We then assign a Gamma prior over τ , p(τ) = Gam(τ |a0, b0). Denote the observed tensor entries by F . The joint
probability of our model is given by

p(S,W,U ,Y, τ) =
∏
k

∏
j

N (uk
j |0, I)Gam(τ |a0, b0) ·

∏
j

Bern(sj|ρ0)
(
sjN (wj|0, σ2

0) + (1− sj)δ(wj)
)

·
∏
i∈F

N (yi|W ×1

(
u1
i1

)⊤ ×2 . . .×K

(
uK
iK

)⊤
, τ−1). (12)

3.1.2 Streaming Inference

We now present our streaming inference algorithm. We assume the observed entries are streamed in a series of small
batches, {B1,B2, . . .}. These batches can have a varying number of tensor entries. Upon the arrival of each batch Bn,
our goal is to incrementally update the posterior of the latent factors U , the core tensorW , the selection indicators S,
and the inverse of the noise variance τ , without revisiting the previous batches {B1, . . . ,Bn−1}.
We explicitly introduce an approximation term of the SS prior in the current posterior qcur. After every a few streaming
batches, we update the approximation term via moment matching. In this way, the sparse regularization of the SS will
be constantly injected and reinforced in the current posterior qcur, which further integrates with the new data, to improve
the sparse posterior estimation ofW . Furthermore, we extend the assumed-density-filtering (ADF) (Boyen and Koller,
2013) framework to perform one-shot incremental posterior update for U ,W and τ in parallel, avoiding the expensive
iterative, alternating updates.

Specifically, we approximate the current (or running) posterior with

qcur(W,U , τ) ∝ p(S)ξ(W,S) ·
K∏

k=1

dk∏
j=1

N (uk
j |µk

j ,V
k
j) · N (vec(W)|µ,Σ)Gam(τ |a, b), (13)

where ξ(W,S) is an approximation to the SS prior in (10),

ξ(W,S) =
∏

j
ξj(wj, sj) =

∏
j
Bern (sj|c(ρj))N (wj|mj, ηj) ∝∼ p(W|S) (14)

and c is the sigmoid function, ∝∼ means “approximately proportional to”, and vec(·) denotes vectorization. Contrasting
to the joint probability of our model in (12), we can see that the terms other than p(S)ξ(S,W) in (13) essentially
integrate (or summarize) the prior of U and τ and the likelihood of all the data points that have been seen so far.

Given an incoming batch Bn, we combine the current posterior with the new data likelihood to construct a blending
distribution,

p̃(U ,W, τ) = qcur(U ,W, τ)
∏
i∈Bn

p(yi|U ,W, τ) (15)

which is an approximation to the joint distribution of all the data (see (12)). We use the idea of moment matching
and projection to update N (vec(W)|m,Σ), Gam(τ |a, b), and the associated N (uk

j |µk
j ,V

k
j). Then after every a few

batches, we update ξ(W,S) to find the best approximation of the SS prior under the current data context (reflected in
the other terms in qcur). In this way, the sparse regularization effect of the SS prior can be injected and reinforced in qcur,
and leveraged in the subsequent posterior updates.

The update of ξ(W,S) resembles standard expectation propagation (Minka, 2001a). We update each ξj in parallel.
We first divide the marginal posterior by the prior approximation to obtain the calibrated (or context) distribution,

q\(wj, sj) ∝
qcur(wj, sj)

ξj(wj, sj)
= Bern(sj|ρ0)N (wj|µ\

j , v
\
j). (16)

We then combine the calibrated distribution and the exact prior to obtain a tilted distribution (which is similar to the
blending distribution in the streaming case),

We project p̃ to the exponential family to obtain the updated posterior. This is done by moment matching. That is,
we compute the moments of p̃, with which to calculate the natural parameters to construct the updated posterior in the

5

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

Algorithm 1 BASS
1: Initialize the spike-and-slab prior approximation and multiply it with all the other priors to initialize qcur(·).
2: while a new batch of tensor entries Bn arrives do
3: In parallel update N (vec(W)|m,Σ), Gam(τ |a, b), and related N (uk

j |µk
j ,V

k
j) in (13) via conditional moment matching

and delta method.
4: if T streaming batches have been processed then
5: Update the spike-and-slab prior approximation following (17) and (18).
6: end if
7: end while
8: return the current posterior qcur(·).

exponential family. It is well known that moment matching is equivalent to minimizing the KL divergence from p̃ to the
approximate posterior.

q∗(wj, sj) = Bern(sj|c(ρ∗j))N (wj|µ∗
j , v

∗
j), (17)

where ρ∗j = log
(
N (µ

\
j |0, σ2

0 + v
\
j)/N (µ

\
j |0, v

\
j)
)
+c−1(ρ0), µ∗

j = c(ρ∗j)µ̂j, v∗j = c(ρ∗j)
(
v̂j+(1−c(ρ∗j))µ̂2

j

)
, where,

v̂j =
((
v
\
j

)−1
+ σ−2

0

)−1
, and µ̂j = v̂j

µ
\
j

v
\
j

. Finally, we update the prior approximation by

ξj(wj, sj)← q∗(wj, sj)/q
\(wj, sj). (18)

To overcome the problem that complex coupling of U andW in the likelihood, we first perform conditional moment
matching, and then seek to calculate the expected conditional moments. Specifically, let us consider the update of
N (vec(W)|µ,Σ) in (13). We denote by Θ all the latent random variables in our model, and define Θ\W = Θ\{W}.
Our key observation is

Ep̃ [ϕ(W)] = Ep̃(Θ\W)Ep̃(W|Θ\W)

[
ϕ(W)|Θ\W

]
, (19)

where ϕ(W) are the required moments of W , including the first and second-order moments here. Therefore, we
can calculate the inner expectation first, namely, the conditional moments. Since it is under the conditional blending
distribution (i.e., given all the remaining variables fixed), the computation can be much easier. Specifically, we derive
that

p̃(W|Θ\W) ∝ N (vec(W)|m,diag(η))N (vec(W)|µ,Σ) ·
∏
i∈F

N
(
yi|
((

uK
iK

)⊤ ⊗ . . .⊗ (u1
i1

)⊤)
vec(W), τ−1

)
(20)

where m is the concatenation of all {mj} and η is the concatenation of all {ηj} (see (14)). Note that the mean in the
Gaussian of yi is obtained from the tensor algebra (Kolda, 2006). Together this gives another Gaussian distribution, and
we can immediately derive the closed-form conditional moments,

E
[
vec(W)|Θ\W

]
= Ω−1

(∑
i

τyibi + diag

(
m

η

)
+Σ−1µ

)
, (21)

E
[
vec(W)vec(W)⊤|Θ\W

]
= Ω−1 + E

[
vec(W)|Θ\W

]
E
[
vec(W)|Θ\W

]⊤
, (22)

where Ω = τ
∑

i∈F bib
⊤
i + diag(η−1) +Σ−1 and bi = uK

iK
⊗ . . . ⊗ u1

i1
. To obtain the moment, wecompute the

expectation of the conditional moment under the marginal blending distribution, p̃(Θ\W), using delta method (Oehlert,
1992; Bickel and Doksum, 2015).

In this way, we only perform one moment matching in parallel to update the approximate terms of qcur, without the
need for sequentially processing each entry in the streaming batch or cyclically update each term in many iterations.
Our one-shot update is analytical, efficient and reliable. The streaming inference is summarized in Algorithm 1.

6

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

3 5 7 9

Number of Factors

1

1.5

 R
M

S
E

(a) ALOG

3 5 7 9

Number of Factors

0.4

0.6

0.8

 R
M

S
E

(b) ACC

3 5 7 9

Number of Factors

0.92

0.94

 R
M

S
E

(c) MovieLen1M

3 5 7 9

Number of Factors

0.7

0.75

0.8

A
U

C

(d) Anime
Figure 1: Predictive performance with different numbers of factors of BASS. The streaming bath size is fixed to 512; The results
are averaged over 5 runs. Note that the performance of several baselines are missing or incomplete, because they are far worse than
all the other methods and hence not included.

0 20 40

Number of Batches

1

1.5

2

R
M

S
E

(a) ALOG (R=5)

0 500 1000

Number of Batches

0.4

0.5

0.6

R
M

S
E

(b) ACC (R=5)

0 500 1500

Number of Batches

0.92

0.94

0.96

R
M

S
E

(c) MovieLen1M (R=5)

0 500 1000

Number of Batches

0.6

0.7

0.8

A
U

C

(d) Anime (R=5)
Figure 2: Running prediction accuracy along with the number of processed streaming batches of BASS. The factor number is
fixed to 5; The batch size is fixed to 512.

3.1.3 Experiments

Datasets. We evaluated BASS in four real-world applications. (1) Alog (Zhe et al., 2016b), a real-valued three-mode
tensor of size 200× 100× 200, representing three-way resource management operations (user, action, resource). It
includes 0.66% observed entries. (2) MovieLen1M (www.grouplens.org/datasets/movielens/), a two-mode
tensor of size 6, 040 × 3, 706, comprising continuous (user, movie) ratings. We have 1, 000, 209 observed entries.
(3) ACC (Du et al., 2018), a real-valued tensor extracted from a large file-access log (user, action, file), of size
3, 000 × 150 × 30, 000, including 0.9% nonzero entries. In addition, we also tested a binary tensor (4) Anime
(www.kaggle.com/CooperUnion/anime-recommendations-database), a two-mode tensor about (user, anime)
preferences, of size 25, 838× 4, 066, including 1, 300, 160 observed elements.

Competing methods. We compared with the state-of-the-art (SOA) multilinear streaming tensor decomposition
algorithm (1) POST (Du et al., 2018), which is based on SVB (Broderick et al., 2013). In addition, we compared
with SOA static multilinear decomposition methods, including (2) P-Tucker (Oh et al., 2018), a highly efficient
Tucker decomposition algorithm that conducts row-wise updates in parallel, (3) CP-WOPT (Acar et al., 2011a), CP
decomposition by conjugate gradient descent, (4) CP-ALS Bader et al. (2015), CP decomposition via alternating least
square updates, (5) NNCP (Lee and Seung, 1999), non-negative CP decomposition with multiplicative updates, and (6)
Tucker-ALS (Bader et al., 2015), Tucker decomposition with alternating least square updates.

Settings and Results. We implemented BASS with MATLAB. To estimate a sparse core tensorW , we set ρ0 = 0.5
and σ2

0 = 1 (see (10)). We used the original implementation of all the competing approaches and their default settings

-0.05 0 0.05

1
st

 component

0.03

0

-0.03

2
n

d
 c

o
m

p
o

n
e

n
t

(a) BASS

-1 0 1

1
st

 component

-1

0

1

2
n

d
 c

o
m

p
o
n
e
n
t

(b) P-Tucker

0.3 0.5 1

Training Ratio

100

1000

3000

T
im

e
 (

s
e

c
o

n
d

s
) R=3

R=5

R=7

R=9

(c) Scalability of BASS-Tucker

0.1 0.3 0.5 0.7 0.9
0.2

0.5

0.8

1

U
n

s
e

le
c
te

d
 R

a
ti
o

(d) Sparsity
Figure 3: The structures of the estimated core-tensor by BASS and P-Tucker (a, b), the scalability of BASS (c) and the sparsity
achieved by BASS.

7

www.grouplens.org/datasets/movielens/
www.kaggle.com/CooperUnion/anime-recommendations-database

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

(e.g., the maximum number of iterations for static decomposition). We first evaluated the final predictive performance,
namely when all the streamed entries have been processed. To this end, we randomly split the observed entries of Alog
into 75% for training and 25% for test and the other datasets 90% for training and 10% for test. For BASS and POST,
we randomly partitioned the training entries into a stream of small batches. The other methods conducted iterative static
decomposition and need to repeatedly access the whole data. We repeated the experiment for 5 times, and calculated the
average root-mean-squared-error (RMSE) for the real-valued datasets and area under ROC curve (AUC) for the binary
dataset. The average RMSE/AUC and standard deviation are reported in Fig. 1. In Fig. 1 a-d, we fixed the streaming
batch size to 512, and show how the final predictive performance of each method varied with different factor numbers,
{3, 5, 7, 9}.

Prediction On the Fly. Next, we evaluated the running predictive performance of BASS. We fixed the batch size to 512,
and randomly streamed the training entries to BASS and POST. We tested the prediction accuracy after each streaming
batch was processed, with the factor number R = 5 . The running RMSE/AUC is shown in Fig. 2. As we can see,
at the beginning, POST is close to or event better than BASS in prediction accuracy. This is reasonable, because our
Tucker model is much more complex than the CP model. However, at later stages, BASS consistently outperforms
POST, mostly by a large margin. Even in Fig. 2 c and g, while POST and BASS overlapped quite a long time, BASS
beat POST when the data stream is about to be finished.

In addition, we examined the scalability of BASS. On ACC, we fixed the batch size to 512, and streamed 30%, 50% and
100% of observed entries to BASS and tested the streaming decomposition time. We varied the factor number R from
{5, 7, 9, 11}. As we can see in Fig. 3c, the running time of BASS grows linearly in the number of streamed entries, and
the factor number R determines the slope. Therefore, BASS enjoys a linear scalability to the data size.

To evaluate if BASS can indeed estimate a sparse core-tensor. We varied ρ0 from (0.1, 0.9) and ran BASS on Alog
dataset. An element of core-tensorW is viewed as selected if the posterior mean of its selection probability is no less
than 0.5. We showed how the ratio of the unselected elements varies with ρ0 in Fig. 3 d under different factor numbers.
We can see that small ρ0 pruned most of the elements while large ρ0 preserved most, showing that BASS can effectively
achieve sparsity in the streaming setting.

Sparse Structure in Core Tensor Finally, we examined if the estimated sparse core-tensor by BASS can reflect some
structure, as compared with the standard Tucker decomposition. To this end, we set the number of latent factors to 9,
and ran BASS and P-Tucker on Alog dataset. The core tensor is of size 9× 9× 9. Then, in each mode, we fold the
core tensor to an 81× 9 matrix, where each row indicates how strongly each factor combination from the other modes
interact with the 9 factors in the current mode. We then ran Principled Component Analysis (PCA) and projected the
interaction matrix onto a plane. The positions of the points represent the first and second principle components, which
summarize how every factor combination from the other modes interact with the factors in the current mode. We show
the results for the first mode in Fig. 3 a and b. As we can see, from BASS, the interaction between the factors in the first
mode and in the other modes clearly exhibit clustering structures, implying different interaction patterns. To show the
structures, we ran the k-means algorithm and filled the cluster regions with different colors. By contrast, the core-tensor
estimated by P-Tucker do not reflect apparent structures, and the interaction strengths are distributed like a symmetric
Gaussian. In the supplementary material, we show that the principled components of BASS for the second mode also
exhibit interesting structures while P-Tucker does not. While all the datasets have been completely anonymized and we
are unable to look into the meaning of the patterns discovered by BASS, these results have demonstrated that BASS, as
compared with standard Tucker decomposition, can potentially discover more interesting patterns and knowledge, and
enhance the interpretability.

3.2 Streaming Bayesian Deep Tensor Factorization(SBDT)

Despite the success of existing tensor factorization methods e.g., (Chu and Ghahramani, 2009; Kang et al., 2012; Choi
and Vishwanathan, 2014), most of them conduct a multilinear decomposition, and rarely exploit powerful modeling
frameworks, like deep neural networks, to capture a variety of complicated interactions in data. More important, for
highly expressive, deep factorization, we lack an effective approach to handle streaming data, which are ubiquitous in
real-world applications. To address these issues, we propose SBDT, a Streaming Bayesian Deep Tensor factorization
method. We first use Bayesian neural networks (NNs) to build a deep tensor factorization model. We assign a spike-
and-slab prior over each NN weight to encourage sparsity and to prevent overfitting. We then use the multivariate delta
method and moment matching to approximate the posterior of the NN output and calculate the running model evidence,

8

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

based on which we develop an efficient streaming posterior inference algorithm in the assumed-density-filtering and
expectation propagation framework. Our algorithm provides responsive incremental updates for the posterior of the
latent factors and NN weights upon receiving newly observed tensor entries, and meanwhile identify and inhibit
redundant/useless weights. We show the advantages of our approach in four real-world applications.

3.2.1 Model

For each tensor entry i, we construct an input xi by concatenating all the latent factors associated with i, namely,
xi = [

(
u1
i1

)⊤
, . . . ,

(
uK
iK

)⊤
]⊤. We assume that there is an unknown mapping between the input factors xi and the

value of entry i, f : R
∑K

k=1 rk → R, which reflects the complex interactions/relationships between the tensor nodes in
entry i. Note that CP factorization uses a multilinear mapping. We use an M -layer neural network (NN) to model the
mapping f , which are parameterized by M weight matricesW = {W1, . . . ,WM}. Each Wm is Vm × (Vm−1 + 1)

where Vm and Vm−1 are the widths of layer m and m − 1, respectively. V0 =
∑K

k=1 rk is the input dimension and
VM = 1. We denote the output in each hidden layer m by hm (1 ≤ m ≤ M − 1) and define h0 = xi. We compute
each hm = σ(Wm[hm−1; 1]/

√
Vm−1 + 1)where σ(·) is a nonlinear activation function, e.g., ReLU and tanh. Note

that we append a constant feature 1 to introduce the bias terms in the linear transformation, namely the last column in
each Wm. For the last layer, we compute the output by fW(xi) = WM [hM−1; 1]/

√
VM−1 + 1.

Despite their great flexibility, NNs take the risk of overfitting. The larger a network, i.e., with more weight parameters,
the easier the network overfits the data. In order to prevent overfitting, we assign a spike-and-slab prior (Ishwaran and
Rao, 2005; Titsias and Lázaro-Gredilla, 2011) (that is ideal due to the selective shrinkage effect) over each NN weight
to sparsify and condense the network. Specifically, for each weight wmjt = [Wm]jt, we first sample a binary selection
indicator smjt from p(smij |ρ0) = Bern(smjt|ρ0) = ρ

smjt

0 (1− ρ0)1−smjt . The weight is then sampled from

p(wmjt|smjt) = smjtN (wmjt|0, σ2
0) + (1− smjt)δ(wmjt), (23)

where δ(·) is the Dirac-delta function. Hence, the selection indicator smjt determines the type of prior over wmjt: if
smjt is 1, meaning the weight is useful and active, we assign a flat Gaussian prior with variance σ2

0 (slab component); if
otherwise smjt is 0, namely the weight is useless and should be deactivated, we assign a spike prior concentrating on 0
(spike component).

Finally, we place a standard normal prior over the factors U . Given the set of observed tensor entriesD = {yi1 , . . . , yiN },
the joint probability of our model for continuous data is

p(U ,W,S, τ) =
∏M

m=1

∏Vm

j=1

∏Vm−1+1

t=1
Bern(smjt|ρ0) ·

(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)

·
∏K

k=1

∏dk

j=1
N (uk

j |0, I)Gamma(τ |a0, b0) ·
∏N

n=1
N (yin |fW(xin), τ

−1) (24)

where S = {smjt}, and for binary data is

p(U ,W,S) =
∏M

m=1

∏Vm

j=1

∏Vm−1+1

t=1
Bern(smjt|ρ0) ·

(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)

·
∏K

k=1

∏dk

j=1
N (uk

j |0, I)
∏N

n=1
Φ
(
(2yin − 1)fW(xin)

)
(25)

3.2.2 Online Moment Matching for Posterior Update

We now present our streaming model estimation algorithm. In general, the observed tensor entries are assumed
to be streamed in a sequence of small batches, {B1,B2, . . .}. Different batches do not have to include the same
number of entries. Upon receiving each batch Bt, we aim to update the posterior distribution of the factors U , the
inverse noise variance τ (for continuous data), the selection indicators S and the neural network weightsW , without
re-accessing the previous batches {Bj}j<t. We exploit the assumed-density-filtering (ADF) framework (?), which
can be viewed as an online version of expectation propagation (EP) (Minka, 2001a), a general approximate Bayesian
inference algorithm. ADF is also based on the incremental version of Bayes’ rule (see (4)). It uses a distribution in the
exponential family (Wainwright and Jordan, 2008) to approximate the current posterior. When the new data arrive,
instead of maximizing a variational ELBO, ADF projects the (unnormalized) blending distribution to the exponential

9

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

family to obtain the updated posterior. The projection is done by moment matching, which essentially is to minimize
KL(p̃(θ)/Z∥q(θ)) where Z is the normalization constant. For illustration, suppose we choose q(θ) to be a fully
factorized Gaussian distribution, q(θ) =

∏
j q(θj) =

∏
j N (θj |µj , vj). To update each q(θj), we compute the first and

second moments of θj w.r.t p̃(θ), and match a Gaussian distribution with the same moments, namely, µj = Ep̃(θj) and
vj = Varp̃(θj) = Ep̃(θ

2
j)− Ep̃(θj)

2.

For our model, we use a fully factorized distribution in the exponential family to approximate the current posterior.
When a new batch of data Bt are received, we sequentially process each observed entry, and perform moment matching
to update the posterior of the NN weightsW and associated latent factors. Specifically, let us start with the binary data.
We approximate the posterior with

qcur(W,U ,S) =
M∏

m=1

Vm∏
j=1

Vm−1+1∏
t=1

Bern(smjt|ρmjt)N (wmjt|µmjt, vmjt) ·
∏K

k=1

∏dk

j=1

∏rk

t=1
N (ukjt|ψkjt, νkjt).

(26)

Given each entry in in the new batch, we construct the blending distribution, p̃(W,U ,S) ∝ qcur(W,U ,S)Φ
(
(2yin −

1)fW(xin)
)
. To obtain its moments, we consider the normalizer, i.e., the model evidence under the blending distribution,

Zn =

∫
qcur(W,U ,S)Φ

(
(2yin − 1)fW(xin)

)
dWdUdS. (27)

Under the Gaussian form, according to (Minka, 2001b), we can compute the moments and update the posterior of each
NN weight wmjt and each factor associated with in— {ukink

}k by (6). Note that since the likelihood does not include
the binary selection indicators S, their moments are the same as those under qcur and we do not need to update their
posterior.

However, a critical issue is that due to the nonlinear coupling of the U andW in computing the NN output fW(xin),
the exact normalizer is analytically intractable. To overcome this issue, we consider approximating the current posterior
of fW(xin) first. We use the multivariate delta method (Oehlert, 1992; Bickel and Doksum, 2015) that expands the NN
output at the mean ofW and U with a Taylor approximation,

fW(xin) ≈ fE[W](E[xin]) + g⊤
n (ηn − E[ηn]) (28)

where the expectation is under qcur(·), ηn = vec(W ∪ xin), gn = ∇fW(xin)|ηn=E[ηn]. Note that xin is the concatena-
tion of the latent factors associated with in. The rationale of the approximation (28) is that the NN output is highly
nonlinear and nonconvex in U andW . Hence, the scale of the output change rate (i.e., gradient) can be much larger than
the scale of the posterior variances ofW and U , which are (much) smaller than prior variance 1 . Therefore, we can
ignore the second-order term that involves the posterior variances. Note that despite the seemingly simpler structure,
our approximation in (28) is still very complex — both the NN output and the Jacobian are highly nonlinear toW , and
hence the model expressiveness is not changed. We have also tried the second-order expansion, which, however, is
unstable and does not improve the performance.

Based on (28), we can calculate the first and second moments of fW(xin),

αn = Eqcur [fW(xin)] ≈ fE[W](E[xin]),

βn = Varqcur(fW(xin)) ≈ g⊤
n diag(γn)gn, (29)

where each [γn]j = Varqcur([ηn]j). Due to the fully factorized posterior form, we have cov(ηn) = diag(ηn). Note that
all the information in the Gaussian posterior (i.e., mean and variance) ofW and U have been integrated to approximate
the moments of the NN output. Now we use moment matching to approximate the current (marginal) posterior of the
NN output by qcur(fW(xin)) = N (fW(xin)|αn, βn). Then we compute the running model evidence (27) by

Zn = Eqcur(W,U,S)[Φ
(
(2yin − 1)fW(xin)

)
] = Eqcur(fW(xin))[Φ

(
(2yin − 1)fW(xin)

)
]

≈
∫
N (fo|αn, βn)Φ

(
(2yin − 1)fo

)
dfo = Φ

((2yin − 1)αn√
1 + βn

)
, (30)

10

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

where we redefine fo = fW(xin) for simplicity. With the nice analytical form, we can immediately apply (6) to
update the posterior forW and the associated factors in in. In light of the NN structure, the gradient can be efficiently
calculated via back-propagation, which can be automatically done by many deep learning libraries.

For continuous data, we introduce a Gamma posterior for the inverse noise variance, qcur(τ) = Gamma(τ |a, b), in
addition to the fully factorized posterior forW , U and S as in the binary case. After we use (28) and (29) to obtain the
posterior of the NN output, we derive the running model evidence by

Zn = Eqcur(W,U,S,τ)[N
(
yin |fW(xin), τ

−1
)
] = Eqcur(fo)qcur(τ)[N (yin |fo, τ−1)]

≈ Eqcur(τ)

[∫
N (fo|αn, βn)N (yin |fo, τ−1)dfo

]
= Eqcur(τ)[N (yin |αn, βn + τ−1)]. (31)

Next, we use the Taylor expansion again, at the mean of τ , to approximate the Gaussian term inside the expectation,

N (yin |αn, βn + τ−1) ≈ N (yin |αn, βn + Eqcur [τ]
−1) + (τ − Eqcur [τ])∂N (yin |αn, βn + τ−1)/∂τ |τ=Eqcur [τ]

. (32)

Taking expectation over the Taylor expansion gives

Zn ≈ N (yin |αn, βn + Eqcur(τ)
−1) = N (yin |αn, βn + b/a). (33)

We now can use (6) to update the posterior ofW and the factors associated with the entry. While we can also use more
accurate approximations, e.g., the second-order Taylor expansion or quadrature, we found empirically our method
achieves almost the same performance.

To update qcur(τ), we consider the blending distribution only in terms of the NN output fo and τ so we have
p̃(fo, τ) ∝ qcur(fo)qcur(τ)N (yin |fo, τ−1) = N (fo|αn, βn)Gamma(τ |a, b)N (yin |fo, τ−1). Then we follow (Wang
and Zhe, 2019) to first derive the conditional moments and then approximate the expectation of the conditional moments
to obtain the moments. The details are given in the supplementary material. The updated posterior is given by
q∗(τ) = Gamma(τ |a∗, b∗), where a∗ = a+ 1

2 and b∗ = b+ 1
2 ((yin − αn)

2 + βn).

As the spike-and-slab prior for each NN weight wmjt (see (23)) is a mixture prior and does not belong to the exponential
family. Hence, we introduce an approximation term,

p(wmjt|smjt) ∝∼ A(wmjt, smjt) = Bern
(
smjt|c(ρmjt)

)
N (wmjt|µ0

mjt, v
0
mjt), (34)

where ∝∼ means “approximately proportional to” and c(x) = 1/(1 + exp(−x)). At the beginning, we initialize
v0mjt = σ2

0 and µ0
mjt to be a random number generated from a standard Gaussian distribution truncated in [−σ0, σ0];

we initialize ρmjt = 0. Obviously, this is a very rough approximation. If we only execute the standard ADF to
continuously integrate new entries to update the posterior (see (6)), the prior approximation term will remain the same
and never be changed. However, the spike-and-slab prior is critical to sparsify and condense the network, and an
inferior approximation will make it noneffective at all. To address this issue, after we process all the entries in the
incoming batch, we use EP to update/improve the prior approximation term (34), with which to further update the
posterior of the NN weights. Hence, as we continuously process streaming batches of the observed tensor entries, the
prior approximation becomes more and more accurate, and thereby can effectively inhibit/deactivate the redundant
or useless weights on the fly. The details of the updates are provided in the supplementary material, where we also
summarize our streaming inference in Algorithm 2.

3.2.3 Experiments

Datasets. We examined SBDT on four real-world, large-scale datasets. (1) DBLP (Du et al., 2018), a binary tensor
about bibliography relationships (author conference, keyword), of size 10, 000 × 200 × 10, 000, including 0.001%
nonzero entries. (2) Anime(https://www.kaggle.com/CooperUnion/anime-recommendations-database), a
two-mode tensor depicting binary (user, anime) preferences. The tensor contains 1, 300, 160 observed entries, of size
25, 838× 4, 066. (3) ACC (Du et al., 2018), a continuous tensor representing the three-way interactions (user, action,
file), of size 3, 000× 150× 30, 000, including 0.9% nonzero entries. (4) MovieLen1M (https://grouplens.org/
datasets/movielens/), a two-mode continuous tensor of size 6, 040× 3, 706, consisting of (user, movie) ratings.
We have 1, 000, 209 observed entries.

11

https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

Algorithm 2 Streaming Bayesian Deep Tensor Factorization (SBDT)

1: Initialize the spike-and-slab prior approximation and multiply it with all the other priors to initialize qcur(·).
2: while a new batch of observed tensor entries Bt arrives do
3: for each entry in in Bt do
4: Approximate the running model evidence with (30) (binary data) or (33) (continuous data).
5: Update the posterior forW and the associated factors {ukinj

}k,j with (6).
6: if continuous data then
7: Update the posterior for the inverse noise variance τ via conditional moment matching.
8: end if
9: Update the spike-and-slab prior approximation with standard EP.

10: end for
11: end while
12: return the current posterior qcur(·).

SBDT-ReLU

SBDT-tanh

SVB-DTF-ReLU

SVB-DTF-tanh

POST

SS-GPTF

SVB-GPTF

CP-WOPT

3 5 8 10

Number of Factors

0.75

0.8

0.85

0.9

A
U

C

(a) DBLP

3 5 8 10

Number of Factors

0.6

0.7

0.8

A
U

C

(b) Anime

3 5 8 10

Number of Factors

0.35

0.45

0.55

R
M

S
E

(c) ACC

3 5 8 10

Number of Factors

0.9

0.95

1

R
M

S
E

(d) MovieLen1M

Figure 4: Predictive performance with different numbers of factors of SBDT. The streaming bath size is fixed to 256; The results
are averaged over 5 runs.

0 500 1000

Number of Batches

0.7

0.8

0.9

A
U

C

(a) DBLP (r = 3)

0 1000 2000

Number of Batches

0.5

0.6

0.7

0.8

A
U

C

(b) Anime (r = 3)

0 2000 4000

Number of Batches

0.34

0.4

0.5

R
M

S
E

(c) ACC (r = 3)

1500 3000

Number of Batches

0.9

0.95

1
R

M
S

E

(d) MovieLen1M (r = 3)

Figure 5: Running prediction accuracy along with the number of processed streaming batches of SBDT. The batch size was fixed
to 256.

Competing methods. We compared with the following baselines. (1) POST (Du et al., 2018), the state-of-the-art
probabilistic streaming tensor decomposition algorithm based on the CP model. It uses streaming variational Bayes
(SVB) (Broderick et al., 2013) to perform mean-field posterior updates upon receiving new entries. (2) SVB-DTF,
streaming deep tensor factorization implemented with SVB. (3) SVB-GPTF, the streaming version of the Gaussian
process(GP) nonlinear tensor factorization (Zhe et al., 2016b), implemented with SVB. Note that similar to NNs, the
ELBO in SVB for GP factorization is intractable and we used stochastic optimization. (4) SS-GPTF, the streaming
GP factorization implemented with the recent streaming sparse GP approximations (Bui et al., 2017). It uses SGD to
optimize another intractable ELBO. (5) CP-WOPT (Acar et al., 2011b), a scalable static CP factorization algorithm
implemented with gradient-based optimization.

Results. We first evaluated the prediction accuracy after all the (accessible) entries are processed. To do so, we
sequentially fed the training entries into every method, each time a small batch. We then evaluated the predictive
performance on the test entries. We examined the root-mean-squared-error (RMSE) and area under ROC curves (AUC)
for continuous and binary data, respectively. We ran the static factorization algorithm CP-WOPT on the entire training
set. On DBLP and ACC, we used the same split of the training and test entries as in (Du et al., 2018), including 320K

12

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

0.3 0.5 1

posterior selection

-1

-0.1
0

0.1

1

p
o
s
te

ri
o
r

m
e
a
n

0.3 0.5 1

posterior selection

0

0.1

0.5

1

p
o

s
te

ri
o

r
v
a

ri
a

n
c
e

Figure 6: Posterior selection probability c(ρ∗mjt) vs. the posterior mean and variance of each NN weight wmjt of SBDT

and 1M training entries for DBLP and ACC respectively, and 100K test entries for both. On Anime and MovieLen1M,
we randomly split the observed entries into 90% for training and 10% for test. For both datasets, the number of
training entries is around one million. For each streaming approach, we randomly shuffled the training entries and then
partitioned them into a stream of batches. On each dataset, we repeated the test for 5 times and calculated the average
of RMSEs/AUCs and their standard deviations. For CP-WOPT, we used a different random initialization for each test.
The results are reported in Fig. 4. As we can see, SBDT (with both tanh and ReLU) consistently outperforms all the
competing approaches in all the cases and mostly by a large margin.

Prediction On the Fly.Next, we evaluated the dynamic performance. We randomly generated a stream of training
batches from each dataset, upon which we ran each algorithm and examined the prediction accuracy after processing
each batch. We set the batch size to 256 and tested with the number of latent factors r = 3 and r = 8. The running
RMSE/AUC of each method are reported in Fig. 2. Note that some curves are missing or partly missing because the
performance of the corresponding methods are much worse than all the other ones. In general, nearly all the methods
improved the prediction accuracy with more and more batches, showing increasingly better factor estimations. However,
SBDT always obtained the best AUC/RMSE on the fly, except at the beginning stage on Anime and MovieLen1M
(r = 8). The trends of SBDT and POST are much smoother than that of SVB-DTF and SVB/SS-GPTF, which might
again because the stochastic updates are unstable and unreliable. Note that in Fig. 5b, SVB-DTF has running AUC
steadily around 0.5, implying that SVB actually failed to effectively update the posterior.

Network Sparsity. Finally, we looked into the estimated posterior distribution of the NN weights. We set the number of
latent factors to 8 and streaming batch-size to 256, and ran SBDT on DBLP dataset with ReLU. In Fig. 6, we show the
posterior selection probability c(ρ∗mjt) vs. the posterior mean µ∗

mjt for each weight wmjt, and c(ρ∗mjt) vs. the posterior
variance v∗mjt for each weight. As we can see, when the posterior selection probability is less than 0.5, i.e., the weight
wmjt is likely to be useless/redundant, both its posterior mean and variance are small and close to 0. The more the
posterior selection probability approaches 0, the closer µ∗

mjt and v∗mjt to 0, exhibiting a shrinkage effect. Thereby the
corresponding weight wmjt is inhibited or deactivated. By contrast, when the posterior selection probability is bigger
than 0.5, the posterior mean and variance have much larger scales and ranges, implying that the corresponding weight is
active and estimated from data freely. Therefore, SBDT can effectively inhibit redundant/useless NN weights to prevent
overfitting during the factorization.

3.3 Bayesian Continuous-Time Tucker decomposition(BCTT)

Tensor decomposition is a dominant framework for multiway data analysis and prediction. Although practical data
often contains timestamps for the observed entries, existing tensor decomposition approaches overlook or under-use
this valuable temporal information. They either drop the timestamps or bin them into crude steps and hence ignore
the temporal dynamics within each step or use simple parametric time coefficients. To overcome these limitations, we
propose Bayesian Continuous-Time Tucker Decomposition (BCTT). We model the tensor-core of the classical Tucker

13

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

decomposition as a time-varying function, and place a Gaussian process prior to flexibly estimate all kinds of temporal
dynamics. In this way, our model maintains the interpretability while is flexible enough to capture various complex
temporal relationships between the tensor nodes. For efficient and high-quality posterior inference, we use the stochastic
differential equation (SDE) representation of temporal GPs to build an equivalent state-space prior, which avoids huge
kernel matrix computation and sparse/low-rank approximations. We then use Kalman filtering, RTS smoothing, and
conditional moment matching to develop a scalable message-passing inference algorithm. We show the advantage of
our method in simulation and several real-world applications.

3.3.1 SDE Representation of Temporal GP

In the literature of stochastic differential equations (SDEs) (Särkkä et al., 2006; Oksendal, 2013), it is known that the
solution of linear SDEs are Gaussian processes on time, namely, temporal GPs. From the other side, for temporal
GPs with certain stationary kernels, we can construct an equivalent Linear Time-Invariant (LTI) SDE through spectral
analysis (Hartikainen and Särkkä, 2010). Take the Matérn kernel (8) with ν = m+ 1

2 (wherem ∈ N) as an example. We
can obtain its power spectral density as S(ω) = P (iω)qcP (−iω), where P (iω) = 1

(β+iω)m+1 , i indicates the imaginary

part, β =
√
2ν/l, and qc =

2σ2π1/2β2m+1Γ(m+1)
Γ(m+1/2) . This is equivalent to feeding a white noise process with diffusion qc

into a system, who transfers the signal with P (iω) to generate the output. Via inverse Fourier transform, we know the
output process is the solution of the SDE

dm+1f(t)

dtm+1
+ am

dmf(t)

dtm
+ . . .+ a0f(t) = ξ(t), (35)

where ξ(t) is the white noise process with diffusion qc, and a0, . . . , am are the coefficients of the zeroth, first, till m-th
term in the polynomial of P (iω)’s denominator. This can be further written as an LTI-SDE, in which we define the state

as y(t) =
(
f(t), df(t)dt , . . . , df

m(t)
dt

)⊤
, and

dy(t)

dt
= Fx(t) + Lξ(t), (36)

where

F =


0 1

.
0 1

−a0 . . . −am−1 −am

 , L =


0
...
0
1

 .

In general, although we cannot guarantee the power spectrum S(ω) of the kernel has a polynomial form in the
denominator, we can apply Taylor approximation on 1/S(ω) to construct an approximately equivalent LTI-SDE.

3.3.2 Model

We model each element of the tensor-coreW in the Tucker decomposition (2) as a time-varying (or trend) function so as
to capture the temporal interactions across all the factor combinations. In order to flexibly estimate a variety of complex
temporal variations, we place a GP prior over each element, wr(t) ∼ GP (0, κ(t, t′)) where r = (r1, . . . , rK). Given
the observed tensor entry values and time points,D = {(i1, t1, y1), . . . , (iN , tN , yN)}, we have a multi-variate Gaussian
prior over the values of wr(·) at the observed timestamps, p(wr) = N (wr|0,Kr),where wr = [wr(t1), . . . , wr(tN)]⊤,
Kr is the N ×N kernel matrix on the time points and each [Kr]n,n′ = κ(tn, tn′). GivenW(tn) = {wr(tn)}r, we

sample the observed entry value from p(yn|W(tn),U) = N
(
yn|vec (W(tn))

⊤
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
,where τ

is the inverse variance, for which we place a Gamma prior, p(τ) = Gam(τ |b0, c0). Here we only consider continuous
observations. However, it is straightforward to extend our model and inference to other types of entry values. We further
place a standard Gaussian prior over the latent factors p(U) =∏K

k=1

∏dk

j=1N (uk
j |0, I). The joint probability is

p(U , {wr}r, τ,y) = p(U)p(τ) ·
(R1,...,RK)∏
r=(1,...,1)

N (wr|0,Kr) ·
N∏

n=1

p(yn|W(tn),U). (37)

14

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

However, a straightforward formulation as in (59) brings in severe computational challenges. The joint probability
includes many multivariate Gaussian distributions, i.e., N (wr|0,Kr). When the number of time points N is large,
the calculation of each kernel matrix Kr and its inverse (in the distribution) is extremely expensive or even infeasible
(O(N3) time complexity). To overcome this hurdle, we have to seek for various sparse GP approximations (Quiñonero-
Candela and Rasmussen, 2005), which essentially use aggressive low-rank structures to approximate the kernel
matrices.

To prevent sparse/low-rank approximations (which can be of low quality), we use SDEs to formulate our model so as to
perform full GP inference with a linear cost in N . Specifically, we observe that each wr(t) is actually a temporal GP.
Therefore, we can construct an equivalent LTI-SDE. For convenience, we use the Matérn kernel with ν = 3/2 = 1+1/2
for illustration. According to (36), for each wr(t), we define a state γr(t) = (wr,

dwr

dt)⊤, and the SDE is

dγr(t)

dt
= Fγr + Lξ(t), (38)

where F = [0, 1;−β2,−2β], L = [0; 1], and the diffusion of the white noise ξ(t) is qc = 4β3σ2. The benefit of the
LTI-SDE representation is that its discrete form (on t1, . . . , tN) is a Gaussian Markov chain,

p(γr(t1)) = N (γr(t1)|0,P∞), (39)
p(γr(tn+1)|γr(tn)) = N (γr(tn+1)|Anγr(tn),Qn) (40)

where P∞ = [σ2, 0; 0, β2σ2] is the stationary covariance calculated by solving the matrix Riccati equation (Lancaster
and Rodman, 1995), ∆n = tn+1 − tn is the time difference, An = exp(F∆n), and Qn = P∞ −AnP∞A⊤

n .

To represent all the temporal GPs in our model, we define a joint state γ(t) as the concatenation of all {γr(t)}r.
Accordingly, the discrete form of the SDE for γ(t) follows

p(γ1) = N (γ1|0,Σ), (41)
p(γn+1|γn) = N (γn+1|Bnγn,Cn), (42)

where γn
∆
= γ(tn), Σ = diag(P∞, . . . ,P∞), Bn = diag(An, . . . ,An), and Cn = diag(Qn, . . . ,Qn). As we can

see, this is essentially a state-space prior over the collection of states {γn}. To extract the tensor-coreW(t), we can use
a sparse R× 2R matrix,

H =


1 0

1 0
. . .

1 0

 ,

to obtain vec(W(t)) = H · γ(t), where R is the size of the tensor-core, R =
∏K

k=1Rk.

Now, we replace the multivariate Gaussians in (59) by the state space prior in (42), and write the joint probability as

p(U , {γn}, τ,y) = p(U)p(τ) · p(γ1)
∏N−1

n=1
p(γn+1|γn)

N∏
n=1

N
(
yn| (Hγn)

⊤
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
. (43)

Since each state γn is only dependent on its previous state γn−1 (Markov property), we no longer need to compute
a giant N ×N covariance matrix nor need low-rank approximations. The state space prior enables us to develop an
efficient, linear GP inference algorithm, as presented in the next section.

3.3.3 Inference by Efficient Filtering, Smoothing and Message Passing

The exact posterior of our model is infeasible to calculate, because the likelihood of each data point n (arising from the
entry-wise Tucker decomposition (2)) couples the relevant latent factors {u1

in1
, . . .uK

inK
} and state γ(tn). To address

this issue, we introduce Gaussian-Gamma likelihood approximations, and based on Kalman filtering (KF) (Kalman,
1960) and Rauch-Tung-Striebel (RTS) smoothing (Rauch et al., 1965) we develop an efficient message-passing algorithm
in the expectation propagation (EP) framework (Minka, 2001a). See Fig.7.

15

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

…

Kalman Filtering (forward) RTS Smoothing (backward) Conditional Moment Matching (parallel)

SDE State (Latent
Dynamic of Tucker
Core, etc.)

Approx. Tucker
Decomp. Likelihood

Associated Factors

<latexit sha1_base64="8/eavOPZSPwjYGSg8MlmChvh3lk=">AAAB/HicbVDLSsNAFJ3UV62vapduBkuhbkoiRV0W3bisYB/QhjKZTtqhk0mYuRFCqL/ixoUibv0Qd/6NkzYLbT0wcDjnXu6Z40WCa7Dtb6uwsbm1vVPcLe3tHxwelY9PujqMFWUdGopQ9T2imeCSdYCDYP1IMRJ4gvW82W3m9x6Z0jyUD5BEzA3IRHKfUwJGGpUrtWFAYEqJSHvzOpyXxMioVbthL4DXiZOTKsrRHpW/huOQxgGTQAXReuDYEbgpUcCpYPPSMNYsInRGJmxgqCQB0266CD/HNaOMsR8q8yTghfp7IyWB1kngmcksqV71MvE/bxCDf+2mXEYxMEmXh/xYYAhx1gQec8UoiMQQQhU3WTGdEkUomL5KpgRn9cvrpHvRcC4bzftmtXWT11FEp+gM1ZGDrlAL3aE26iCKEvSMXtGb9WS9WO/Wx3K0YOU7FfQH1ucPqLyUJA==</latexit>

ln

<latexit sha1_base64="lMUYj6z9sa+4wpotgHvloiIVVB0=">AAACTnicbVFNaxsxFNS6X86mH25zzEXUGGwwZjeYNkfTXAK5JBDHBttdtFqtLaLVLtLbgBH6hb2U3PIzcskhIbTyxofEzoBgmJmHnkZxIbiGILjxam/evnv/ob7j73789PlL4+u3C52XirIhzUWuxjHRTHDJhsBBsHGhGMliwUbx5dHKH10xpXkuz2FZsFlG5pKnnBJwUtRgrfY0I7CgRJiRbUOnixP8UnECdPyWiKRfGXFqSvs7jIzhkZHWRqHt4qlIctBd/CxxUiWkjU5s1GgGvaAC3ibhmjTRGqdR43qa5LTMmAQqiNaTMChgZogCTgWz/rTUrCD0kszZxFFJMqZnpqrD4pZTEpzmyh0JuFKfTxiSab3MYpdcbas3vZX4mjcpIT2cGS6LEpikTxelpcCQ41W3OOGKURBLRwhV3O2K6YIoQsH9gO9KCDefvE0uDnrhj17/rN8c/FrXUUf76DtqoxD9RAN0jE7REFH0B92ie/Tg/fXuvEfv31O05q1n9tAL1Or/AUT3tA8=</latexit>

u1
in1

, . . . ,uK
inK

<latexit sha1_base64="oxCchRzkfbXBibOxSm3NQmpln04=">AAACbXicbVFbi9QwGE3rba2XrYoPXpDgMDgLw9DKoj4u+iLsywrOzsJ0LGmazobNpSRfhSHkzV/om3/BF/+CaXeEvfhB4HDOCd/JSdUKbiHLfkXxjZu3bt/ZuZvcu//g4W766PGx1Z2hbE610OakIpYJrtgcOAh20hpGZCXYojr71OuL78xYrtVX2LRsJcla8YZTAoEq0x/jSSEJnFIi3MJPYG+Ka3yZCQTsJWNRqmQ8KFXjOv8tL53jpVPel7mf4kLUGuwUX3AcDg7ly0OfFDqk6EO6f4ZiTaQkvt9QpqNslg2Dr4N8C0ZoO0dl+rOoNe0kU0AFsXaZZy2sHDHAqWBhW2dZS+gZWbNlgIpIZlduaMvjcWBq3GgTjgI8sBdvOCKt3cgqOPuo9qrWk//Tlh00H1aOq7YDpuj5oqYTGDTuq8c1N4yC2ARAqOEhK6anxBAK4YOSUEJ+9cnXwfHbWf5utv9lf3TwcVvHDnqBXqMJytF7dIA+oyM0RxT9jtLoWfQ8+hM/jV/Gr86tcbS98wRdmvjNX+XHuxw=</latexit>

�(t)

…

Figure 7: Graphical illustration of the message-passing inference algorithm for BCTT.

Specifically, we approximate each data likelihood with

N
(
yn| (Hγn)

⊤
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
≈ ℓn

∆
= Zn ·

∏K

k=1
N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)
· Gam (τ |bn, cn) · N (Hγn | βn,Sn) , (44)

where Zn is a normalization term (it will be canceled during inference). Hence we obtain the approximate posterior by

q(U , {γn}, τ) ∝
∏K

k=1

∏dk

j=1
N (uk

j |0, I)Gam(τ |b0, c0)
N∏

n=1

K∏
k=1

N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)
Gam (τ |bn, cn)

· p(γ1)N (Hγ1 | β1,S1)

N−1∏
n=1

p(γn+1|γn)N (Hγn | βn,Sn) . (45)

The parameters of the approximation terms, including {mk,n
ink
,Vk,n

ink
, bn, cn,βn,Sn}, will be updated and estimated

during the message-passing inference. After that, we can obtain the (approximate) posterior of latent factors and
noise inverse variance τ by merging relevant terms, q(uk

j) ∝ N (uk
j |0, I)

∏
ink

=j N (uk
ink
|mk,n

ink
,Vk,n

ink
), and q(τ) ∝

Gam(τ |b0, c0)
∏N

n=1 Gam(τ |bn, cn), which have closed forms, i.e., Gaussian or Gamma.

However, the posterior of the states γn is not easy to obtain, because γn are chained in the state space prior. Thanks
to the Gaussian term N (Hγn | βn,Sn) introduced in (44) — by symmetry, we can view it as N (βn|Hγn,Sn) —
a Gaussian likelihood (emission) of the virtual observation βn following the state space prior of each γn (see the
third line of (45)). Therefore, we can apply the standard KF in a forward pass and RTS smoothing in a backward
pass to efficiently compute all the marginal posteriors q(γn) and q(γn,γn+1), with a linear cost in N (i.e., O(N)
complexity). Note that the standard KF and RTS can only be used for Gaussian emissions but they give exact results.
For non-Gaussian likelihoods, we have to combine with extra approximations, such as extended KF and unscented
KF (Särkkä, 2013), which can be unstable and more costly.

To optimize the approximation terms in each ℓn (see (44)), we develop a message- passing algorithm in the EP
framework. Specifically, at each step, given all ℓn, we first run KF and RST smoothing to calculate the posterior of each
sate q(γn). The calculation is actually the standard message passing in chain graphical models (Bishop, 2006). Each
Gaussian term N (Hγn | βn,Sn) is the initial message sent from data point n to the state γn, then we conduct KF to
compute the message from each γn to γn+1 (forward pass), and then RTS smoothing the messages from γn+1 to γn

(backward pass). The posterior q(γn) is obtained by aggregating all the messages sent to γn (i.e., those from γn−1,
γn+1 and data point n), which ends up with a Gaussian distribution.

Next, we use the state posteriors {q(γn)} to update the likelihood approximation terms in {ℓn} via EP. Specifically, for
each data point n, we obtain a calibrated distribution by dividing the global posterior by the current approximation,

q\n(Θn) ∝
q(γn)q(τ)

∏K
k=1 q(u

k
ink

)

ℓn
= N (ηn|β\n,S\n) ·

∏K

k=1
N
(
uk
ink
|mk,\n

ink
,V

k,\n
ink

)
Gam

(
τ |b\n, c\n

)
(46)

16

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

where ηn = Hγn = vec (W(tn)), and Θn = {ηn, {uk
ink
}k, τ} are all the random variables present in the n-th

likelihood. The calibrated distribution integrates the information from all the other data points, i.e., the context. To
update the terms in ℓn, we construct a tilted distribution,

p̃(Θn) ∝ q\n(Θn) · N
(
yn|η⊤

n

(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
. (47)

We aim to project the tilted distribution back to our approximation family (exponential family), to obtain

q∗(Θn) = N (ηn|β∗
n,S

∗
n) ·

∏K

k=1
N
(
uk
ink
|mk,∗

ink
,Vk,∗

ink

)
Gam (τ |b∗n, c∗n) (48)

from which we update ℓn terms via dividing the calibrated distribution back,

ℓn ←
q∗(Θn)

q\n(Θn)
. (49)

The projection essentially is to minimize the Kullback-Leibler divergence from p̃(Θn) to q∗(Θn), which can be done
by moment matching. For example, the Gaussian posterior of ηn in (48) needs two moments — the expectation of ηn

and ηnη
⊤
n . So we need to compute them under the tilted distribution so as to match the parameters of q∗(ηn), namely

β∗
n = Ep̃ [ηn] and S∗

n = Ep̃

[
ηnη

⊤
n

]
− Ep̃ [ηn]Ep̃ [η]

⊤.

The standard EP assumes the moment matching is computationally tractable. However, this is not the case in our
model. Since ηn and the latent factors are coupled in the product and Kronecker product in the tilted distribution (47),
we do not have a closed form of the moments. To address this problem, we use the idea of the conditional moment
matching (Wang and Zhe, 2019). Take ηn as an example. Denote the required moments by ϕ(ηn) =

(
ηn,ηnη

⊤
n

)
. The

key observation is that we can decompose the expectation into a nested structure,

Ep̃ [ϕ(ηn)] = Ep̃(Θ\ηn)

[
Ep̃(ηn|Θ\ηn)

[
ϕ(η)|Θ\ηn

]]
(50)

where Θ\ηn

∆
= Θn\{ηn}. Therefore, we can compute the conditional moment first, i.e., the inner expectation, and

then take expectation over the conditional moments, i.e., the outer-expectation. Given all the other variables Θ\ηn
fixed,

the conditioned tilted distribution p̃(ηn|Θ\ηn
) is simply a Gaussian. Hence, the conditional moment is easy to obtain,

E
[
ηn|Θ\ηn

]
= Σn

((
S\n

)−1

β\n + τynvn

)
, (51)

E
[
ηnη

⊤
n |Θ\ηn

]
= Σn + E

[
ηn|Θ\ηn

]
E
[
ηn|Θ\ηn

]⊤
(52)

where vn = u1
in1
⊗ . . .⊗ uK

inK
and Σn =

((
S\n)−1

+ τvnv
⊤
n

)−1

.

Next, we need to take the outer-level expectation to obtain the moments, namely, computing the mean of the conditional
moment under the marginal tilted distribution p̃(Θ\ηn

). However, since p̃(Θ\ηn
) is analytically intractable, the outer

expectation does not have a closed form. To tackle this issue, we observe that the moment matching is also performed
between q(Θ\ηn

) and p̃(Θ\ηn
), and hence we can assume they are close, especially in high density regions. We then

use the current posterior as the surrogate to compute the expected conditional moment,

Ep̃[ϕ(ηn)] ≈ Eq(Θ\ηn) [ρn] (53)

where ρn is the conditional moment.

Nonetheless, since ρn is a nonlinear function of the conditioned variables Θ\ηn
(see (51)), we do not have a close

form to compute (53) either. But we have already known the form of q(Θ\ηn
), so we can use the multivariate delta

method (Oehlert, 1992; Bickel and Doksum, 2015) to compute the expectation easily. Specifically, we use a first-order
Taylor approximation to represent the conditional moments,

ρn(Θ\ηn
) ≈ ρn

(
Eq

[
Θ\ηn

])
+ J ·

(
vec
(
Θ\ηn

)
− vec

(
Eq

[
Θ\ηn

]))
(54)

17

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

Algorithm 3 BCTT

Input: D = {(i1, t1, y1), . . . , (iN , tN , yN)}, kernel hyper-parameters l, σ2

Initialize approximation terms in (44) for each likelihood.
repeat

Go through all modes, sequentially compute {q(Zk(isk))}k=1:K by KF and smoother.
for n = 1 to N in parallel do

Simultaneously update N (Hγn|βn,Sn), Gam(τ |bn, cn) and
{
N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)}
k

in (44) with condi-
tional moment matching and multi-variate delta method.

end for
until Convergence
Return: {q(W(tn))}Nn=1, {q(uk

j)}1≤k≤K,1≤j≤dk
, q(τ)

where J is the Jacobian at Eq

[
Θ\ηn

]
. Then taking the expectation over the Taylor approximation gives

Eq(Θ\ηn) [ρn] ≈ ρn

(
Eq

[
Θ\ηn

])
. (55)

We refer to (Oehlert, 1992; Wolter, 2007) for the theoretical justifications and guarantees of the delta method.

With the same approach, we can compute the moments for other random variables in Θ, including {uk
ink
} and τ , and

obtain their posterior in (48). Finally, we apply (49) to update the approximation terms in the likelihood.

While the derivation of the conditional moment matching is a bit lengthy, the implementation is straightforward.
From (55) and (53), we just need to derive the form of the conditional moments (in our case, it is either Gaussian or
Gamma), and then plug in the expectation of the conditioned variables under the current poster. For efficiency, we
update the approximation factors of all the likelihoods in parallel, and then perform damping to be stable (Minka,
2001b). We repeatedly do message passing and conditional moment matching until convergence. The model inference
is summarized in Algorithm 3.

In each iteration, our algorithm runs KF and RTS smoothing to go through data twice, so as to calculate the posterior of
each state γn, and then conduct conditional moment matching in parallel to update the likelihood approximation for
each data point. The overall time complexity is O(NR), where R is the size of the tensor-core. The space complexity
is O

(
N(R

2
+
∑K

k=1R
2
k)
)

which is to store the posterior of each state and the likelihood approximation terms at each
data point. Hence, our algorithm enjoys a linear scalability with the growth of data. Note that our algorithm fulfills the
full GP inference, without the need for any sparse or low-rank approximations.

3.3.4 Experiments

Ablation Study We first evaluated BCTT on a synthetic task. We simulated a two-mode tensor, where each mode
includes 50 nodes. For each node, we generated two latent factors that reflect a clustering structure in each mode.
Specifically, for the nodes in mode 1, we sampled the latent factors u1

j from N ([−1; 1], 0.1I) for 1 ≤ j ≤ 25, and
from N ([1;−1], 0.1I) for 26 < j ≤ 50. Similarly, for the nodes in mode 2, we sampled u2

j ∼ N ([1; 1], 0.1I) when
1 ≤ j ≤ 25, and N ([−1;−1], 0.1I) for 26 < j ≤ 50. Given the latent factors, we generate the tensor entry values at
any time t from

yi(t) = u1i1,1u
2
i2,1w(1,1)(t) + u1i1,1u

2
i2,2w(1,2)(t) + u1i1,2u

2
i2,1w(2,1)(t) + u1i1,2u

2
i2,2w(2,2)(t), (56)

where w(1,1)(t) = sin(2πt), w(1,2)(t) = cos(2πt), w(2,1)(t) = sin(2πt) sin(2πt), and w(2,2)(t) =

cos(2πt) sin2(2πt). These weight functions represent the four temporal interaction patterns between factors across the
two modes, corresponding to the tensor-coreW(t) in our model. We generated 2K observed entries from t ∈ [0, 1].

We implemented our method BCTT with PyTorch (Paszke et al., 2019). We use the Matérn kernel with ν = 3/2, and
set l = σ2 = 0.1. We ran our message-passing inference until convergence. The tolerance level was set to 10−3. Then
we compared the learned tensor-coreW(t) with the ground-truth interaction functions between every pair of the factors
across the two modes1. As we can see from Fig. 8, our approach recovered each function pretty accurately, showing
that BCTT has successful captured all the temporal dynamics within the factor interactions.

1We normalized each learned interaction function by the maximum posterior mean of the corresponding state. This is to address the
identifiablility issue, since scaling W arbitrarily then re-scaling U accordingly do not change the Tucker decomposition loss (or likelihood).

18

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

0.0 0.2 0.4 0.6 0.8 1.0

Learned
Ground-truth

(a) w(1,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(b) w(1,2)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(c) w(2,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(d) w(2,2)(t)

Figure 8: Recovered temporal dynamics within factor interactions by BCTT.

RMSE MovieLens AdsClicks DBLP

CT-CP 1.113± 0.004 1.337± 0.013 0.240± 0.007
CT-GP 0.949± 0.008 1.422± 0.008 0.227± 0.009
DT-GP 0.963± 0.008 1.436± 0.015 0.227± 0.007
DDT-GP 0.957± 0.008 1.437± 0.010 0.225± 0.006
DDT-CP 1.022± 0.003 1.420± 0.020 0.245± 0.004
DDT-TD 1.059± 0.006 1.401± 0.022 0.232± 0.09
BCTT 0.922± 0.002 1.322± 0.012 0.214± 0.009

MAE

CT-CP 0.788± 0.004 0.787± 0.006 0.105± 0.001
CT-GP 0.714± 0.004 0.891± 0.011 0.092± 0.004
DT-GP 0.722± 0.008 0.893± 0.008 0.084± 0.003
DDT-GP 0.720± 0.003 0.894± 0.009 0.083± 0.001
DDT-CP 0.755± 0.002 0.901± 0.011 0.114± 0.002
DDT-TD 0.742± 0.006 0.866± 0.012 0.101± 0.001
BCTT 0.698± 0.002 0.777± 0.016 0.084± 0.001

(a) R = 3

RMSE MovieLens AdsClicks DBLP

CT-CP 1.165± 0.008 1.324± 0.013 0.263± 0.006
CT-GP 0.965± 0.019 1.410± 0.015 0.227± 0.007
DT-GP 0.949± 0.007 1.425± 0.015 0.225± 0.008
DDT-GP 0.948± 0.005 1.421± 0.012 0.220± 0.006
DDT-CP 1.141± 0.007 1.623± 0.013 0.282± 0.011
DDT-TD 0.944± 0.003 1.453± 0.035 0.312± 0.072
BCTT 0.895± 0.007 1.304± 0.018 0.202± 0.009

MAE

CT-CP 0.835± 0.006 0.792± 0.007 0.128± 0.001
CT-GP 0.717± 0.012 0.883± 0.016 0.092± 0.002
DT-GP 0.714± 0.005 0.886± 0.012 0.084± 0.001
DDT-GP 0.707± 0.004 0.882± 0.015 0.082± 0.003
DDT-CP 0.843± 0.003 1.082± 0.013 0.141± 0.004
DDT-TD 0.712± 0.002 0.903± 0.024 0.221± 0.047
BCTT 0.679± 0.001 0.785± 0.010 0.080± 0.001

(b) R = 7

Table 1: Prediction error and standard deviation for R = 3and R = 7 of BCTT. The results were averaged over five
runs.

Real-World Applications Next, we examined BCTT on three real-world benchmark datasets. (1) MovieLen100K
(https://grouplens.org/datasets/movielens/), a two-mode (user, movie) tensor, of size 610×9729. The entry
values are movie ratings at different time points. We have 100, 208 observed entries and their timestamps. (2) AdsClick
(https://www.kaggle.com/c/avazu-ctr-prediction), a three-mode mobile ads click tensor, (banner-position,
site domain, app), of size 7× 2842× 4127. We collected 50K observed entry values (number of clicks) at different
time points (in ten days). DBLP (https://dblp.uni-trier.de/xml/), a three-mode tensor about bibliographic
records in computer science from 2011 to 2021, (author, conference, keyword), of size 3731× 1935× 169. The entry
values are the numbers of publications. There are 50k entry values and their timestamps.

We compared with following state-of-the-art multilinear and nonparametric tensor decomposition algorithms with time
information integrated. (1) CT-CP (Zhang et al., 2021), continuous-time CP decomposition, which uses polynomial
splines to estimates λ in (1) as a trend function. (2) CT-GP, continuous-time GP decomposition, which extends (Zhe
et al., 2016a) to use GPs to learn tensor element as a function of the latent factors and time yi(t) = g(u1

i1
, . . . ,uK

iK
, t) ∼

(a) W(1) (b) W(4) (c) W(7) (d) DDT-TD

Figure 9: The structures of learned tensor-core at different time points by BCTT (a-c) and the static tensor-score learned by
dynamic discrete-time Tucker decomposition (DDT-TD).

19

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/c/avazu-ctr-prediction
https://dblp.uni-trier.de/xml/

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

GP(0, κ(·, ·)). (3) DT-GP, discrete-time GP decomposition, which expands the tensor with a discrete time mode and
then applies GP decomposition. (4) DDT-CP, dynamic discrete-time CP decomposition, which on top of DT-CP, places
an RNN-like dynamic prior over the time factors, p(tj |tj−1) = N (tj |σ(Atj−1) + b, vI) where σ(·) is a nonlinear
activation, (5) DDT-TD and (6) DDT-GP, dynamic discrete-time Tucker and GP decomposition, which place the same
dynamic prior as in DDT-CP.

As shown in Table 1, our approach BCTT outperforms the competing methods in all the cases except that in Table 1d,
on AdsClicks, BCTT was the second best, and its MAE is slightly worse than CP-CT. In most cases, the improvement
obtained by BCTT is large and significant (p < 0.05). It shows that our semi-parametric model BCTT not only
maintains the interpretable structure as in Tucker decomposition, but also achieves a superior performance, even to
full nonparametric models, e.g., CT-GP and DDT-GP. This might because BCTT uses the state-space representation to
enable full GP inference, without any low-rank/sparse approximation as needed in those GP baselines.

Furthermore, we investigated if our learned tensor-coreW(t) can reflect temporal structural variations. To do so, we set
R = 7 and ran BCTT on DBLP dataset. We looked at the tensor-core at three time points t = 1, 4, 7. The size of the
tensor-core is 7× 7× 7. We followed (Fang et al., 2021a) to fold the tensor-core to a 49× 7 interaction matrix for each
mode. Thus, each row expresses how strongly the combination of factors in other modes interact with the factors in the
current mode. To reflect the structure, we ran Principled Component Analysis (PCA), and show the first and second
principled components in a plane. We also tested DDT-TD which learns a static tensor-core but using time factors and
nonlinear dynamics. We looked at the results at mode 1. As shown in Fig. 9 a-c, we can see a clear structural variation.
At t = 1, the tensor-core elements are quite concentrated, showing somewhat homogeneous interactions. The case is
similar at t = 4 but the interaction strengths are more scattered. However, at t = 7, the strengths clearly formed four
groups, exhibiting heterogeneous interaction patterns — a major shift. Together these imply the interaction between
factors evolve with time. As a comparison, the tensor-core learned by DDT-TD do not reflect apparent structures or
temporal patterns. It is inconvenient to examine how the interactions between the factors of the tensor nodes evolve.

4 Proposed Research

As our research has thus far addressed the challenges of streaming tensor data (BASS (Fang et al., 2021a), SBDT (Fang
et al., 2021b)) and temporal tensor data (BCTT (Fang et al., 2022)) independently, the natural next step is to develop
a unified framework that combines both concepts of "dynamic" modeling: streaming and temporal. To this end, we
propose the concept of Streaming Factor Trajectory Learning (SFTL) for temporal tensor decomposition, which aims
to model temporal Bayesian tensors in a streaming manner. By incorporating the benefits of both streaming and
temporal modeling into a unified framework, SFTL has the potential to offer superior modeling performance, increased
interpretability, and broader applicability to real-world problems.

4.1 Streaming Factor Trajectory Learning for Temporal Tensor Decomposition(SFTL)

Practical tensor data is often along with time information. Most existing temporal decomposition approaches estimate a
set of fixed factors for the objects in each tensor mode, and hence cannot capture the temporal evolution of the objects’
representation. More important, we lack an effective approach to capture such evolution from streaming data, which is
very common in real-world applications. To address these issues, we propose Streaming Factor Trajectory Learning
(SFTL) for temporal tensor decomposition. We use Gaussian processes (GPs) to model the trajectory of factors so
as to flexibly estimate their temporal evolution. To address the computational challenges in handling streaming data,
we convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE). We
develop an efficient online filtering algorithm to estimate a decoupled running posterior of the involved factor states
upon receiving new data. The decoupled estimation enables us to conduct standard RTS smoothing to compute the full
posterior of all the trajectories in parallel, without the need for revisiting any previous data.

4.1.1 Model

In real-world applications, tensor data is often associated with time information, namely, the timestamps at which the
objects of different modes interact to generate the entry values.

To capture the potential evolution of the objects’ inner properties, we propose a Bayesian temporal tensor decomposition
model that can estimate a trajectory of the factor representation. Specifically, for each object j in mode m, we model

20

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

the factors as a function of time, um
j : [0,∞]→ RR. To flexibly capture a variety of temporal evolution, we assign a

GP prior over each element of um
j (t) = [umj1(t), . . . , u

m
jR(t)]

⊤,

umjr(t) ∼ GP(0, κ(t, t′)) (57)

where 1 ≤ r ≤ R. Given the factor trajectories, we then use the CP or Tucker form to sample the entry values at
different time points. For the CP form, we have

p(yℓ(t)|U(t)) = N (yℓ(t)|1⊤(u1
ℓ1(t) ◦ . . . ◦ uK

ℓM (t)), τ−1), (58)

where U(t) = {um
j (t)} includes all the factor trajectories, and τ is the inverse noise variance, for which we assign a

Gamma prior, p(τ) = Gam(τ |α0, α1). Note that for convenience, we absorb the CP coefficients λ (see (1)) into the
factors. For the Tucker form, we have p(yℓ(t)|U(t),W) = N (yℓ(t)|vec(W)⊤(u1

ℓ1
(t) ⊗ . . . ⊗ uK

ℓM
(t)), τ−1) where

we place a standard normal prior over the tensor-core, p(vec(W)) = N (vec(W)|0, I). In this work, we focus on
continuous observations. It is straightforward to extend our method for other types of observations.

Suppose we have a collection of observed entry values and timestamps, D = {(ℓ1, y1, t1), . . . , (ℓN , yN , tN)} where
t1 ≤ · · · ≤ tN . We denote the sequence of timestamps when a particular object j of modem participated in the observed
entries by smj,1 < . . . < smj,cmj , where cmj is the participation count of the object. Note that it is a sub-sequence of {tn}.
From the GP prior (57), the values of each umjr(t) at these timestamps follow a multi-variate Gaussian distribution,
p(um

jr) = N (um
jr|0,Km

j) where um
jr = [umjr(s

m
j,1), . . . , u

m
jr(s

m
j,cmj

)]⊤ and Km
j is the kernel matrix computed at these

timestamps. The joint probability of our model with the CP form is

p({um
jr}, τ,y) =

M∏
m=1

dm∏
j=1

R∏
r=1

N (um
jr|0,Km

j)Gam(τ |α0, α1) ·
∏N

n=1
N (yn|1⊤(u1

ℓn1
(tn) ◦ . . . ◦ uM

ℓnM
(tn)), τ

−1).
(59)

The joint probability with the Tucker form is the same except that we use the Tucker likelihood instead and multiply
with the prior of tensor-core p(W).

While this formulation is straightforward, it can introduce computational challenges. There are many multi-variate
Gaussian distributions in the joint distribution (59), i.e., {N (um

jr|0,Km
j)}. The time and space complexity to compute

eachN (um
jr|0,Km

j) is O
((
cmj
)3)

and O
((
cmj
)2)

, respectively. With the increase of N , the appearance count cmj for
many objects can grow as well, making the computation cost very expensive or even infeasible. The issue is particularly
severe when we handle streaming data — the number of timestamps grows rapidly with new data keeps coming in, so
does the size of each covariance matrix.

4.1.2 Running Posterior Inference

The components of SFTL inference applied similar techniques as temporal tensor(BCTT (Fang et al., 2022)), saying,
efficient sequential inference of factor trajectories by Kalman filter and smoothing. As for the streaming update of
other parameters, e.g., noise level τ , Tucker coreW , we apply the same online moment-matching framework as in
BASS (Fang et al., 2021a). We illustrate the inference procedure in Figure 10, but omit the details here for brevity.

4.1.3 Expected Outcome

By exploring the temporal trajectory of latent factors with streaming inference, the proposed method can capture the
dynamic interactions between factors more accurately and lead to more accurate and reliable models, with increased
interpretability and usefulness for a wide range of applications.

References

Acar, E., Dunlavy, D. M., Kolda, T. G., and Morup, M. (2011a). Scalable tensor factorizations for incomplete data.
Chemometrics and Intelligent Laboratory Systems, 106(1):41–56.

Acar, E., Dunlavy, D. M., Kolda, T. G., and Morup, M. (2011b). Scalable tensor factorizations for incomplete data.
Chemometrics and Intelligent Laboratory Systems, 106(1):41–56.

21

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

…

Data Stream

…

…

…
…

…
…

… …

Time

: Trajectory States

: State Transition

: Old data

: New data

Factor
Trajectory

<latexit sha1_base64="5n0yeQrQu81jiijee3Odo6imSos=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RghL0iWMDuZTYbMzq4zvUJY8hNePCji1d/x5t84SfagiQUNRVU33V1BIoVB1/12VlbX1jc2C1vF7Z3dvf3SwWHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6m/qtJ66NiFUdxwn3IzpQIhSMopXa3fqQI+2pXqnsVtwZyDLxclKGHLVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7N7J+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QY3viZUEmKXLH5ojCVBGMyfZ70heYM5dgSyrSwtxI2pJoytBEVbQje4svLpHle8a4qlw8X5eptHkcBjuEEzsCDa6jCPdSgAQwkPMMrvDmPzovz7nzMW1ecfOYI/sD5/AH724/z</latexit>

⇥n

<latexit sha1_base64="tL1s/LXf7S/A2TrUf+E78dTW898=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIsgCCURX8tSNy4r2Ae0IUymk3boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+Nkorq2vrG+XNytb2zu6eWd3vyCgRmLRxxCLR85EkjHLSVlQx0osFQaHPSNef3OR+94EISSN+r6YxcUM04jSgGCkteWZ1ECI1xoilzcxL+amTeWbNrtszWMvEKUgNCrQ882swjHASEq4wQ1L2HTtWboqEopiRrDJIJIkRnqAR6WvKUUikm86iZ9axVoZWEAn9uLJm6u+NFIVSTkNfT+ZB5aKXi/95/UQF125KeZwowvH8UJAwS0VW3oM1pIJgxaaaICyozmrhMRIIK91WRZfgLH55mXTO6s5l/eLuvNZoFnWU4RCO4AQcuIIG3EIL2oDhEZ7hFd6MJ+PFeDc+5qMlo9g5gD8wPn8AJXuT8A==</latexit>Bn+1
<latexit sha1_base64="l+VUxQuQrLv0B7lbawxt0tqHSWc=">AAACKXicbVDLSgMxFM3UV62vqks3wSK4KjPiayOU6sJlBfuAThkyadqGZjJDckcow/yOG3/FjYKibv0R03aQ2nogcDjn3pt7jx8JrsG2P63c0vLK6lp+vbCxubW9U9zda+gwVpTVaShC1fKJZoJLVgcOgrUixUjgC9b0h9djv/nAlOahvIdRxDoB6Uve45SAkbxixQ0IDCgRyU3qJeDJFF/hX62aeg52aRxhV3RD0Bmfsc2Ikl22J8CLxMlICWWoecVXtxvSOGASqCBatx07gk5CFHAqWFpwY80iQoekz9qGShIw3Ukml6b4yChd3AuVeRLwRJ3tSEig9SjwTeV4ST3vjcX/vHYMvctOwmUUA5N0+lEvFhhCPI4Nd7liFMTIEEIVN7tiOiCKUDDhFkwIzvzJi6RxUnbOy2d3p6VKNYsjjw7QITpGDrpAFXSLaqiOKHpEz+gNvVtP1ov1YX1NS3NW1rOP/sD6/gFEmqdD</latexit>Dtn

= B1 [. . . [Bn

<latexit sha1_base64="YUGELCh/M2jF7Fg84J2ER2IGB7o=">AAACN3icbZDLSsNAFIYnXmu9VV26GSyCIJREvG0EqS5cSYW2FpoQJtOpHZxMwsyJUELeyo2v4U43LhRx6xs4aYPUy4GBj/8/hznnD2LBNdj2kzU1PTM7N19aKC8uLa+sVtbW2zpKFGUtGolIdQKimeCStYCDYJ1YMRIGgl0Ht2e5f33HlOaRbMIwZl5IbiTvc0rASH7lctsNCQwoEel55qfgywyf4G+tnvkOdmkSY1f0ItAFT9iy7DYHDIifyl0n8ytVu2aPCv8Fp4AqKqrhVx7dXkSTkEmggmjddewYvJQo4FSwrOwmmsWE3pIb1jUoSci0l47uzvC2UXq4HynzJOCROjmRklDrYRiYznxj/dvLxf+8bgL9Yy/lMk6ASTr+qJ8IDBHOQ8Q9rhgFMTRAqOJmV0wHRBEKJuqyCcH5ffJfaO/VnMPawdV+9bRexFFCm2gL7SAHHaFTdIEaqIUoukfP6BW9WQ/Wi/VufYxbp6xiZgP9KOvzC7XhrHE=</latexit>

⇥n+1

<latexit sha1_base64="UhqzIZ0yL8wM8wc9dVIp8+QUXVE=">AAACeHicbVFNT9tAEF27hVLz0VCOXFYNESBQZKMWekFClANHkAggxZE13kzIivXa2h0jRa5/Q/9bb/0hvfTUTbBQ+HjSSk/vzdPMzqSFkpbC8I/nv3u/sPhh6WOwvLK69qm1/vna5qUR2BO5ys1tChaV1NgjSQpvC4OQpQpv0vsfU//mAY2Vub6iSYGDDO60HEkB5KSk9asTZ0BjAao6q5OKEl3zY/6kndZJxGNRFjxWw5xsw+dsHXTiqzESJJXei+r9Z+ZM4nGBZi701Ocnb5LapQjKgJIoabXDbjgDf02ihrRZg4uk9Tse5qLMUJNQYG0/CgsaVGBICoV1EJcWCxD3cId9RzVkaAfVbHE17zhlyEe5cU8Tn6nziQoyaydZ6iqn09uX3lR8y+uXNPo+qKQuSkItHhuNSsUp59Mr8KE0KEhNHAFhpJuVizEYEORuFbglRC+//JpcH3Sjw+63y6/tk9NmHUtsk31hOyxiR+yEnbML1mOC/fU2vS2v4/3zub/t7z6W+l6T2WDP4B/8B84Zvzw=</latexit>

t1
<latexit sha1_base64="ctsfu2flz6bIYQU3jWx8sfFl9c4=">AAACeHicbVFNa9tAEF2pbZKqTeK2x1yWuqYNCUYy/cilENIccnTBdgKWEaP1OF6yWondUcEo+g39b731h/TSU9eOCHbSBwuP9+YxszNpoaSlMPzt+U+ePtva3nkevHi5u7ffevV6ZPPSCByKXOXmKgWLSmockiSFV4VByFKFl+nNt6V/+QONlbke0KLASQbXWs6kAHJS0vrZiTOguQBVnddJRYmu+Vd+r53VScRjURY8VtOcbMPXbB104sEcCZJKH0X18Ya5knhcoFkL3fe55U1SuxRBGVDSS1rtsBuuwB+TqCFt1qCftH7F01yUGWoSCqwdR2FBkwoMSaGwDuLSYgHiBq5x7KiGDO2kWi2u5h2nTPksN+5p4it1PVFBZu0iS13lcnr70FuK//PGJc1OJpXURUmoxV2jWak45Xx5BT6VBgWphSMgjHSzcjEHA4LcrQK3hOjhlx+TUa8bfe5++v6xfXrWrGOHHbC37AOL2Bd2yi5Ynw2ZYH+8A++d1/H++tx/7x/elfpek3nDNuD3/gHPnb89</latexit>

t2
<latexit sha1_base64="NFnEPMf9e+UjfCTOiaNt0rJwXGs=">AAACeHicbVFNT9tAEF27hVLz0VCOXFYNESBQZKMWekFClANHkAggxZE13kzIivXa2h0jRa5/Q/9bb/0hvfTUTbBQ+HjSSk/vzdPMzqSFkpbC8I/nv3u/sPhh6WOwvLK69qm1/vna5qUR2BO5ys1tChaV1NgjSQpvC4OQpQpv0vsfU//mAY2Vub6iSYGDDO60HEkB5KSk9asTZ0BjAao6q5OKEl3zY/6kndZJxGNRFjxWw5xsw+dsHXTiqzESJJXei+r9Z+ZM4nGBZi701Ocnb5LapQjKwKlJqx12wxn4axI1pM0aXCSt3/EwF2WGmoQCa/tRWNCgAkNSKKyDuLRYgLiHO+w7qiFDO6hmi6t5xylDPsqNe5r4TJ1PVJBZO8lSVzmd3r70puJbXr+k0fdBJXVREmrx2GhUKk45n16BD6VBQWriCAgj3axcjMGAIHerwC0hevnl1+T6oBsddr9dfm2fnDbrWGKb7AvbYRE7YifsnF2wHhPsr7fpbXkd75/P/W1/97HU95rMBnsG/+A/Kpy/eQ==</latexit>

tn
<latexit sha1_base64="dD7HqAmv93c4zgJG65AdXuM8vog=">AAACfHicbVFNT9tAEF2bQsHQEuDIoauGSFSUyK4o7aUSgh56pBIBpDiyxpsJWbFeW7vjSpHrX9F/xq0/pZeKTWKh8PGklZ7em6fZmUkLJS2F4V/PX3q1vPJ6dS1Y33jzdrO1tX1p89II7Ilc5eY6BYtKauyRJIXXhUHIUoVX6e3Z1L/6hcbKXF/QpMBBBjdajqQAclLS+tOJM6CxAFV9r5OKEl3zb/xBO62TiMeiLHishjnZhi/YOujEF2MkSCp9ENUfH5kziccFmoXQQ5/fvElqlyIoA5oHklY77IYz8OckakibNThPWnfxMBdlhpqEAmv7UVjQoAJDUiisg7i0WIC4hRvsO6ohQzuoZsureccpQz7KjXua+ExdTFSQWTvJUlc5ncA+9abiS16/pNHXQSV1URJqMW80KhWnnE8vwYfSoCA1cQSEke6vXIzBgCB3r8AtIXo68nNy+akbHXc//zxqn5w261hlu+w922cR+8JO2A92znpMsH/eO2/f++D99/f8A/9wXup7TWaHPYJ/fA+ZQsD1</latexit>

tn+1

Figure 10: A graphical model representation of SFTL, from which we can see {Θn+1,Bn+1} are independent to Dtn conditioned
on Θn and the noise inverse variance τ , namely, Θn+1,Bn+1 ⊥ Dtn |Θn, τ .

Bader, B. W., Kolda, T. G., et al. (2015). Matlab tensor toolbox version 2.6. Available online.

Bickel, P. J. and Doksum, K. A. (2015). Mathematical statistics: basic ideas and selected topics, volume I, volume 117.
CRC Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Boyen, X. and Koller, D. (2013). Tractable inference for complex stochastic processes. arXiv preprint arXiv:1301.7362.

Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. (2013). Streaming variational bayes. Advances
in neural information processing systems, 26.

Bui, T. D., Nguyen, C., and Turner, R. E. (2017). Streaming sparse gaussian process approximations. Advances in
Neural Information Processing Systems, 30.

Choi, J. H. and Vishwanathan, S. (2014). Dfacto: Distributed factorization of tensors. In Advances in Neural
Information Processing Systems, pages 1296–1304.

Chu, W. and Ghahramani, Z. (2009). Probabilistic models for incomplete multi-dimensional arrays. AISTATS.

Du, Y., Zheng, Y., Lee, K.-c., and Zhe, S. (2018). Probabilistic streaming tensor decomposition. In 2018 IEEE
International Conference on Data Mining (ICDM), pages 99–108. IEEE.

Fang, S., Kirby, R. M., and Zhe, S. (2021a). Bayesian streaming sparse tucker decomposition. In Uncertainty in
Artificial Intelligence, pages 558–567. PMLR.

Fang, S., Narayan, A., Kirby, R., and Zhe, S. (2022). Bayesian continuous-time tucker decomposition. In International
Conference on Machine Learning, pages 6235–6245. PMLR.

Fang, S., Wang, Z., Pan, Z., Liu, J., and Zhe, S. (2021b). Streaming bayesian deep tensor factorization. In International
Conference on Machine Learning, pages 3133–3142. PMLR.

22

Bayesian Tensor Decomposition for Dynamic Data PROPOSAL

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Model and conditions for an”explanatory”multi-
mode factor analysis. UCLA Working Papers in Phonetics, 16:1–84.

Hartikainen, J. and Särkkä, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression
models. In 2010 IEEE international workshop on machine learning for signal processing, pages 379–384. IEEE.

Ishwaran, H. and Rao, J. S. (2005). Spike and slab variable selection: frequentist and bayesian strategies.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C. (2012). Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 316–324. ACM.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions, volume 2. United States. Department of
Energy.

Lancaster, P. and Rodman, L. (1995). Algebraic riccati equations. Clarendon press.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788–791.

Minka, T. P. (2001a). Expectation propagation for approximate bayesian inference. In Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence, pages 362–369.

Minka, T. P. (2001b). A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute
of Technology.

Oehlert, G. W. (1992). A note on the delta method. The American Statistician, 46(1):27–29.

Oh, S., Park, N., Lee, S., and Kang, U. (2018). Scalable Tucker factorization for sparse tensors-algorithms and
discoveries. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 1120–1131. IEEE.

Oksendal, B. (2013). Stochastic differential equations: an introduction with applications. Springer Science & Business
Media.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information
processing systems, 32:8026–8037.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approximate gaussian process regression.
The Journal of Machine Learning Research, 6:1939–1959.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA
journal, 3(8):1445–1450.

Särkkä, S. (2013). Bayesian filtering and smoothing. Number 3. Cambridge University Press.

Särkkä, S. et al. (2006). Recursive Bayesian inference on stochastic differential equations. Helsinki University of
Technology.

Titsias, M. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel
learning. Advances in neural information processing systems, 24.

Tucker, L. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–311.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Now
Publishers Inc.

Wang, Z. and Zhe, S. (2019). Conditional expectation propagation. In UAI, page 6.

Wolter, K. (2007). Introduction to variance estimation. Springer Science & Business Media.

Zhang, Y., Bi, X., Tang, N., and Qu, A. (2021). Dynamic tensor recommender systems. Journal of Machine Learning
Research, 22(65):1–35.

Zhe, S., Qi, Y., Park, Y., Xu, Z., Molloy, I., and Chari, S. (2016a). Dintucker: Scaling up gaussian process models on
large multidimensional arrays. In Thirtieth AAAI conference on artificial intelligence.

Zhe, S., Zhang, K., Wang, P., Lee, K.-c., Xu, Z., Qi, Y., and Ghahramani, Z. (2016b). Distributed flexible nonlinear
tensor factorization. In Advances in Neural Information Processing Systems, pages 928–936.

23

	Introduction
	Background
	Bayesian Tensor Decomposition
	Assumed Density Filtering: Bayesian Online Learning
	Gaussian Process

	Research As Far
	Bayesian Streaming Sparse Tucker Decomposition (BASS)
	Model
	Streaming Inference
	Experiments

	Streaming Bayesian Deep Tensor Factorization(SBDT)
	Model
	Online Moment Matching for Posterior Update
	Experiments

	Bayesian Continuous-Time Tucker decomposition(BCTT)
	SDE Representation of Temporal GP
	Model
	Inference by Efficient Filtering, Smoothing and Message Passing
	Experiments

	Proposed Research
	Streaming Factor Trajectory Learning for Temporal Tensor Decomposition(SFTL)
	Model
	Running Posterior Inference
	Expected Outcome

